Recent results of charmonium radiative decay from BESIII

Rong-Gang Ping For the BES collaboration

- Motivation
- Physics results
 - $\psi' \rightarrow \gamma \chi_{cJ}$ $\geq \chi_{cJ} \rightarrow \pi^0 \pi^0, \eta \eta$ $\geq \chi_{cJ} \rightarrow 4 \pi^0$ $\geq \chi_{cJ} \rightarrow \gamma V (V = \omega, \rho, \phi)$

$$\succ \chi_{\rm cJ} \rightarrow \phi \, \phi, \, \omega \, \omega, \, \omega \, \phi$$

My talk is based on 106 million ψ' data

• Summary

Palais des Congrès, Paris, July 22-28, 2010DPF2006

Motivation

χ_{cJ} decays could be a good place to

- study gluonium: $\chi_c \rightarrow gg \rightarrow (qq)(qq)$. C. Amsler and F. E. Close, Phys. Rev. D 53, 295 (1996).
- test color octet mechanism.
 G. T. Bodwin *et al.*, Phys Rev. Lett. **D51**, 1125 (1995).
 H.-W. Huang and K.-T. Chao, Phys. Rev. **D54**, 6850 (1996).
 J. Bolz *et al.*, Eur. Phys. J. C 2, 705 (1998).

decay width	theory[3]	ory[3] PDG08	
Γ[χ _{c0} → π° π°]/keV	23.5	25 ± 2	
$\Gamma [\chi_{c2} \rightarrow \pi^0 \pi^0] / \text{keV}$	1.93	1.4 ± 0.2	
Γ[χ _{c0} → ηη] /keV	32.7	25 ±4	
Γ[χ _{c2} → ηη] /keV	2.66		

• investigate doubly-OZI suppressed decays, which may compete with the singly-OZI suppressed decays.

Study of $\psi' \rightarrow \gamma \chi_{cJ}; \chi_{cJ} \rightarrow \pi^0 \pi^0, \eta \eta$

Good agreement between data & MC

CLEOc: PRD 79, 072007 (2009).

PDG08

CLEOc

 2.4 ± 0.4

CLEOc used their own branching ratios for $\psi' \rightarrow \gamma \chi_{cJ}$.

 $3.18 \pm 0.13 \pm 0.31 \pm 0.16$

< 0.5

 $0.51 \pm 0.05 \pm 0.05 \pm 0.03$

CLEO Collaboration, Phys. Rev. D79: 072007 (2009).

Measurements of $\chi_{cJ} \rightarrow \gamma V$, V= ϕ , ρ^0 , ω

 $\Box \phi \rightarrow K^+K^-, \rho^0 \rightarrow \pi^+\pi^-$

These decays are important for evaluating theoretical techniques.

B (10 ⁻⁶)	BESIII	CLEOc	pQCD
$\chi_{c0} \rightarrow \gamma \phi$	< 14.8	< 6.4	0.46
$\chi_{c1} \rightarrow \gamma \phi$	$27.3 \pm 5.5_{\rm stat}$	< 26	3.6
$\chi_{c2} \rightarrow \gamma \phi$	< 7.8	< 13	1.1
$\chi_{c0} \rightarrow \gamma \rho^0$	< 9.5	< 9.6	1.2
$\chi_{c1} \rightarrow \gamma \rho^0$	$241 \pm 14_{\mathrm{stat}}$	$243 \pm 19 \pm 22$	14
$\chi_{c2} \to \gamma \rho^0$	< 19.7	< 50	4.4
$\chi_{c0} \rightarrow \gamma \omega$	< 11.7	< 8.8	0.13
$\chi_{c1} \rightarrow \gamma \omega$	$73.5 \pm 7.6_{\mathrm{stat}}$	$83 \pm 15 \pm 12$	1.6
$\chi_{c2} \rightarrow \gamma \omega$	< 5.8	< 7.0	0.5

BESIII: Only statistical errors are shown

χ_{c1} → γφ observed for first time.
pQCD predictions ×10 too low.
Difference may be explained by non-perturbative QCD "loop corrections". D.Y Chen *et al*, arXiv:1005.0066v2[hep-ph].

CLEOc: PRL 101, 151801 (2008) pQCD: Y.J. Gao et al., hep-ph/0701009⁷ Measurements of $\chi_{cJ} \rightarrow \gamma V$, $V=\phi,\rho,\omega$

- Vector production is dominated by the longitudinal polarization in the $\chi_{c1}\to\gamma V$

Amplitude: $\varepsilon_{\alpha\beta\mu\nu}P^{\alpha}\varepsilon^{\beta}(\lambda_{\chi})\varepsilon^{\mu}(\lambda_{\gamma})\varepsilon^{\nu}(\lambda_{V})$ $\sim \vec{\epsilon}(\lambda_{\chi}) \bullet [\vec{\epsilon}(\lambda_{\gamma}) \times \vec{\epsilon}(\lambda_{V})]$ $\lambda_{\gamma} = \pm 1$ (Transverse), so $\lambda_{V} = 0$ (Longitudinal)

 Polarization of vector mesons can be observed in the helicity angular distribution

helicity angle: $(\vec{P}_{meson}, \vec{P}_{V}) (V=\phi, \rho); (\vec{P}_{V}, \vec{n}_{V}) (V=\omega)$ where \vec{P}_{i} is the momentum evaluated in their mother rest frame, \vec{n}_{ω} is the normal to the ω decay plane.

Longitudinal polarization : $\cos^2\theta$ (dominant) Transverse polarization: $\sin^2\theta$

BESIII preliminary

Study of $\chi_{cJ} \rightarrow VV$, $V = \omega, \phi$

Important laboratory to test QCD:

Previous measurements from BESII.

Only χ_{c0} and χ_{c2} decays into $\phi\phi$ and $\omega\omega$ are observed.

BR (10 ⁻³)	Xc0	Xc2	
$\rightarrow \phi \phi$	$0.94 \pm 0.21 \pm 0.13$	$1.70 \pm 0.30 \pm 0.25$	BESII, PLB 642, 197 (2006)
$\rightarrow \omega \omega$	$2.29 \pm 0.58 \pm 0.41$	$1.77 \pm 0.47 \pm 0.36$	BESII, PLB 630, 7 (2005)

 $\Box \chi_{c1} \rightarrow V V$ is suppressed due to helicity selection rule in pQCD

P-parity conservation requires the two vectors

 $V(\lambda_1)$ χ_{c1}

SO $\lambda_1 + \lambda_2 \neq 0$

having different polarization, so it is suppressed.

 $\Box \chi_{cJ} \rightarrow \omega \phi$ is doubly OZI suppressed.

 $V(\lambda_2)$

Study of $\chi_{cJ} \rightarrow \phi \phi \rightarrow 2(K^+K^-)$ in $\psi \rightarrow \gamma \chi_{cJ}$,

- Using kinematic fit to select $\gamma 2(K^+K^-)$ candidates
- $\phi\phi$ pair reconstruction: minimize $[M^{(1)}(K^+K^-)-m_{\phi}]^2 + [M^{(2)}(K^+K^-)-m_{\phi}]^2$

Study of $\chi_{cJ} \rightarrow \omega \omega \rightarrow 2(\pi^+ \pi^- \pi^0)$ in $\psi \rightarrow \gamma \chi_{cJ}$

- Using kinematic fit to select $5\gamma 2(\pi^+\pi^-)$ candidates
- $\pi^0 \pi^0$ pair reconstruction: minimize $[M^{(1)}(\gamma \gamma) m_{\pi 0}]^2 + [M^{(2)}(\gamma \gamma) m_{\pi 0}]^2$ loop over 5 γ
- ω reconstruction: minimize $|m(\pi^+ \pi^- \pi^0) m_\omega|$, then $\pi^+ \pi^- \pi^0$ reconstruct another ω

Study of $\chi_{cJ} \rightarrow \omega \phi \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$ in $\psi \rightarrow \gamma \chi_{cJ}$

- K⁺K⁻ are identified : minimize |M(K⁺K⁻)-m_{\u03c6}|
- •Using kinematic fit to select $3\gamma 2K2\pi$ candidates
- ω reconstruct: minizize $\sqrt{(m_{\gamma\gamma} m_{\pi^0})^2 + (m_{\gamma\gamma\pi^+\pi^-} m_{\omega})^2}$ loop over 3γ

Summary

- Some nice results of χ_{CJ} decays are obtained with the ψ ' data
- $\psi' \rightarrow \gamma \chi_{cJ}$ could be χ_{cJ} factory. More χ_{cJ} results will come soon

Thank you for your attention.

Backup

Palais des Congrès, Paris, July 22-28, 2010DPF2006

 $\chi_{cI} \rightarrow 4\pi^0$ from $\psi' \rightarrow \gamma \chi_{cI}$ decays

> $\gamma_{E1} 4\pi^0$ candidates are reconstructed from $\psi' \rightarrow 9\gamma$ with totally 945 combinations.

$$\chi_{4\pi^{0}}^{2} = \frac{\left(\mathbf{m}_{\gamma_{1}\gamma_{2}} - \mathbf{m}_{\pi^{0}}\right)^{2}}{\sigma_{\pi^{0}}^{2}} + \frac{\left(\mathbf{m}_{\gamma_{3}\gamma_{4}} - \mathbf{m}_{\pi^{0}}\right)^{2}}{\sigma_{\pi^{0}}^{2}} + \frac{\left(\mathbf{m}_{\gamma_{5}\gamma_{6}} - \mathbf{m}_{\pi^{0}}\right)^{2}}{\sigma_{\pi^{0}}^{2}} + \frac{\left(\mathbf{m}_{\gamma_{7}\gamma_{8}} - \mathbf{m}_{\pi^{0}}\right)^{2}}{\sigma_{\pi^{0}}^{2}}$$

➤ Veto background ψ'→γ J/ψ→γ4π⁰: |m(π⁰π⁰−rec.)-m J/ψ|>0.1 GeV, no peaking backgrounds.

► KsKs selection: $R = [m(\pi_1^0 \pi_2^0) - m(Ks)]^{2+} [m(\pi_3^0 \pi_4^0) - m(Ks)]^2$

