High Precision Measurements of D_{s1}(2536)

Initial-State-Radiation (ISR) Production of D_s Mesons

Joseph M. Izen The University of Texas at Dallas on behalf of The BABAR Collaboration

(All new results are preliminary)

Modeled by Daryl Oshatz 🔸 Berkeley Lat

$D_{s1}(2536)$ Measurements: Motivation

$q\bar{q}$ Quark Model Assignments

$n^{2s+1}\ell_J$	J^{PC}	$c\overline{s}; \ \overline{c}s$
$1 {}^{1}P_{1}$	1^{+-}	$D_{s1}(2536)^\pm$
$1 {}^{3}P_{0}$	0^{++}	$D^*_{s0}(2317)^{\pm \dagger}$
$1 {}^{3}P_{1}$	1^{++}	$D_{s1}(2460)^{\pm\dagger}$
$1 {}^{3}P_{2}$	2^{++}	$D_{s2}(2573)^\pm$

[†] Considerably smaller than most theoretical predictions (RPP 2008)

- *P*-wave *D_s* masses poorly explained by potential models/HQET
- Alternatives: Tetra quarks $D^{(*)}K$ molecules Unitarized chiral models Lattice calculations
- Clear theoretical picture yet to emerge
- 2009 PDG values: $m(D_{s1}) = (2535.35 \pm 0.34 \pm 0.50) \text{ MeV}/c^2$ $m(D_{s1})-m(D^{*\pm}) = (525.3 \pm 0.6 \pm 0.1) \text{ MeV}/c^2$ $\Gamma(D_{s1}) < 2.3 \text{ MeV}/c^2 \text{ CL}=90\%$

BaBar can do better

J.M. Izen

Data and Selection

- PEP-II / BaBar data: 384 fb⁻¹ at $\Upsilon(4S)$ and 40 MeV/ c^2 below $\Upsilon(4S)$
- Decay:

$$D_{s1}^{+} \rightarrow D^{*+} K_{s}^{0}$$

$$D^{0}\pi^{+} \pi^{+}\pi^{-}$$

$$K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{-}\pi^{+}$$

• Particle ID: K and π K_s alignment α <0.15 rad

- Entire decay tree topological-only (vertex) constrained fit: χ^2 fit prob. > 0.001 Tie-breaker for multiple entries
- p*(D_{s1})>2.7 GeV/c (suppresses combinatorial backgrounds)

J.M. Izen

$D_{s1}(2536)$ Signal

Momentum-Dependent Resolution Function

J.M. Izen

ICHEP 2010 – Heavy Quark Properties

Fit: R Relativistic L=0 Breit-Wigner

Fitting MC reproduces input values

	Parameter	Κ4 π	Κ6 π	generated
	$\Delta m(D_{s1})$ [MeV/ c^2]	27.737±0.003	27.734±0.003	27.74
Indu	Γ(D _{s1}) [MeV/ c ²]	1.001±0.005	0.991±0.006	1.0
Ad Vd	$\Delta m(D_{s1})$ [MeV/ c^2]	27.728±0.008	27.725±0.010	27.744
Ĩ	Γ(<i>D</i> _{s1}) [MeV/ <i>c</i> ²]	2.003±0.016	2.017±0.022	2.0

...but MC mass resolution too good

- Biases fit to Γ
- Apply correction to $\Gamma(D_{s1})$

*K*4*π*: -48 keV/*c*² *K*6*π*: -50 keV/*c*²

Systematic: $\pm 34 \text{ keV}/c^2$ for correction

J.M. Izen

ICHEP 2010 – Heavy Quark Properties

Systematic Uncertainties

	$\Delta_{\Delta m}$	$/ \text{keV}/c^2$	$\Delta_{\Gamma}/$	keV
Systematic uncertainty	$K4\pi$	$K6\pi$	$K4\pi$	$K6\pi$
Resolution $+10$ %	< 0.5	< 0.5	± 34	± 34
MC validation	± 7	± 10	± 1	± 9
Alternative resolution models	< 0.5	< 0.5	± 2	± 12
Multi-Gaussian resolution: $r \pm \delta r$	< 0.5	< 0.5	± 6	± 7
Multi-Gaussian resolution: Param of σ	0 < 0.5	< 0.5	± 3	± 2
Breit-Wigner signal lineshape: L	± 9	± 8	± 2	± 3
Numerical precision of convolution	< 0.5	< 0.5	< 0.5	< 0.5
Mass window for $\Delta m(D_{s1}^+)$	< 0.5	< 0.5	± 9	± 3
Background parameterization	< 0.5	< 0.5	± 5	± 7
Tracking region material density	± 21	± 13	± 14	± 15
SVT Alignment	± 6	± 7	± 2	± 14
Magnetic field strength	± 12	± 19	± 19	± 11
Length scale	± 4	± 6	± 8	± 4
Drift chamber hits	± 11	± 15	± 7	± 7
ϕ -dependency	± 13	± 14	-	-
Results	± 33	± 35	± 45	± 46

J.M. Izen

New Precision $D_{s1}(2536)$ Measurements

Motivation for $e^+e^- \rightarrow \gamma_{ISR} D_s^{(*)} D_s^{(*)}$

• Search for *J*^{PC}=1⁻⁻ states and structures

– Use Initial State Radiation (ISR) to scan E_{CM}

- Measure $D_s^+ D_s^{-\prime} D_s^{*+} D_s^{\prime} D_s^{*+} D_s^{*-}$ cross section
- Exploration of Y(4260) decays
 - Y(4260) $\rightarrow \pi \pi J/\psi$ observed
 - $Y(4260) \rightarrow D^{(*)}D^{(*)}$ not found
 - Tetraquark hypothesis: $Y(4260) \rightarrow D_s D_s$ "dominant"

o Maiani, et al., PRD 72, 031502 (2005)

J.M. Izen

Data and Preliminary Selection

- Entire PEP-II / BaBar data: 525 fb⁻¹
 - Most at $\Upsilon(4S)$ and 40 MeV/ c^2 below $\Upsilon(4S)$
 - I6 fb⁻¹ at ↑(2S), 31 fb⁻¹at ↑(3S), 4 fb⁻¹ above ↑(4S)

• Select events with $D_s D_s$ (+ photons, E_{γ} > 30 MeV)

Channel First D_s decay mode Second D_s decay mode

1)	$K^+ K^- \pi^+$	$K^+ \ K^- \ \pi^-$
2)	$K^+ K^- \pi^+$	$K^{+} K^{-} \pi^{-} \pi^{0}$
3)	$K^+ K^- \pi^+$	$K^0_S \ K^-$

- Vertex constraint, K_s mass constraint (prob. >0.1%)
- $D_{s}^{*}\Delta m = m(K^{+}K^{-}\pi^{+}\gamma) m(K^{+}K^{-}\pi^{+})$ within 2σ
- Likelihood ratio formed from discriminating variables
 - Resolve ambiguities, reject bg back
- $D_s * D_s (*)$ candidates removed from $D_s D_s (*)$ sample
- $m(D_s^{(*)}D_s^{(*)}) \le 6.2 \text{ GeV}/c^2$

J.M. Izen

ICHEP 2010 – Heavy Quark Properties

ISR Selection: $|M^2_{rec}| < 0.8 \ GeV^2/c^4$

γ_{ISR} detected kinematically in D_s^(*)D_s^(*)recoil
 not explicitly reconstructed
 ~90% lost down beampipe

ICHEP 2010 – Heavy Quark Properties

J.M. Izen

Total $D_s^{(*)}D_s^{(*)}$ Cross Section

Systematic Uncertainty (%)

Source	$D_s^+ D_s^-$	$D_s^{*+}D_s^-$	$D_s^{*+}D_s^{*-}$
Background subtraction	18.0	4.2	4.9
Branching fractions	10.0	10.0	10.0
Particle identification	5.0	5.0	5.0
Tracking efficiency	1.4	1.4	1.4
π^0 's and γ	1.1	2.9	4.7
Likelihood cut	8.7	4.0	
Total	23	13	13

• Y(4260) is at a $D_s^{(*)}D_s^{(*)}$ cross section minimum

Comparison with Previous Measurements

- Good agreement with CLEO-c energy scan cross section measurements PRD 80, 072001 (2009)
- BaBar measurement extends E_{CM} range to 6.2 GeV/c²

Fit to Charmonia + Y(4260) + Coherent BG

Only statistical errors here

Systematic errors here incl. res. Parameters, bg

Res	sonance		Fraction		1
		$D_s^+ D_s^-$	$D_s^{*+}D_s^-$	$D_s^{*+}D_s^{*-}$	
P(r	<i>m</i>)	11 ± 5	27 ± 5	71 ± 20	1
$\psi(4$	4040)	62 ± 21			
$\psi(4$	4160)	23 ± 26	53 ± 8		
$\psi(4$	1415)	6 ± 11	4 ± 2	5 ± 12	
Y(4	4260)	0.5 ± 3.0	18 ± 24	11 ± 16	
Sur	n	103	102	87	
	$\frac{\mathcal{B}(Y(42))}{\mathcal{B}(Y(42))} = \frac{\mathcal{B}(Y(42))}{\mathcal{B}(Y(42))} = \mathcal{$	$ \frac{4260) \rightarrow .}{260) \rightarrow .} $ $ \frac{4260) \rightarrow .}{260) \rightarrow .} $ $ \frac{260) \rightarrow .}{260) \rightarrow .} $	$\frac{D_s^+ D_s^-}{J/\psi \pi^+ \tau}$ $\frac{D_s^{*+} D}{J/\psi \pi^+ \tau}$ $\frac{D_s^{*+} D_s^{*}}{J/\psi \pi^+ \tau}$	$\left(\frac{\pi^{-}}{\pi^{-}}\right) < 0$ $\left(\frac{\pi^{-}}{\pi^{-}}\right) < 4$ $\left(\frac{\pi^{-}}{\pi^{-}}\right) < 3$	$100 \frac{1}{2}$ $100 \frac{1}{2}$ $100 \frac{1}{2}$

- Yellow: scaled M²_{rec} sideband
- Dash: Yellow + coherent background
- Line: Dash + resonances

Quark Properties

(All measurements are preliminary)

Conclusions

- $D_s^{(*)}D_s^{(*)}$ cross section measurements - E_{CM} from threshold to 6.2 GeV
- No evidence for $Y(4260) \rightarrow D_s^{(*)}D_s^{(*)}$ – Constrains Tetraquark interpretation
- New high precision measurements of $D_{s1}(2536)$ $m(D_{s1}^+) - m(D^{*+}) = (524.85 \pm 0.01 \pm 0.04) MeV/c^2$

 $m(D_{s1}^+) = (2535.12 \pm 0.01 \pm 0.18) MeV/c^2$

$$\Gamma(D_{s1}^+) = (0.94 \pm 0.03 \pm 0.04) MeV/c^2$$

(All results preliminary)

J.M. Izen

ICHEP 2010 – Heavy Quark Properties

Supplemental Slides

J.M. Izen

Relativistic Breit-Wigner

$$BW(m) = \left(\frac{p_m}{p_{m_0}}\right)^{2L+1} \left(\frac{m_0}{m}\right) \frac{mF_L(p_m)^2}{(m_0^2 - m^2)^2 + \Gamma_m^2 m_0^2}$$

 $L = 0 \text{ or } L = 2 \text{ due to parity conservation.}$

$$F_{0}(p_{m}) = 1$$

$$F_{2}(p_{m}) = \frac{\sqrt{9 + 3(Rp_{m_{0}})^{2} + (Rp_{m_{0}})^{4}}}{\sqrt{9 + 3(Rp_{m})^{2} + (Rp_{m})^{4}}} \qquad R = 1.5 \; (\text{GeV}/c)^{-1}$$
F. von Hippel, C. Quigg, Phys. Rev. D 5, 624 (1972)

$$\Gamma_m = \Gamma_{m_0}^{tot} \left(\mathcal{B}_1 \left(\frac{p_m}{p_{m_0}} \right)^{2L+1} \left(\frac{m_0}{m} \right) F_L(p_m)^2 + \mathcal{B}_2 \left(\frac{p'_m}{p'_{m_0}} \right)^{2L+1} \left(\frac{m_0}{m} \right) F_L(p'_m)^2 \right)$$

 p_{m_0} denotes the momentum of a D_{s1}^+ daughter in the CM system defined by the mean of the Breit-Wigner m_0 obtained from a fit. The variable p_m is the momentum of the same daughter in the CM system of the D_{s1}^+ resonance candidate with mass m.

 p'_m, p'_{m_0} correspond to p_m, p_{m_0} , respectively, but are calculated for the $D^{*0}K^+$ decay mode.

J.M. Izen

ICHEP 2010 – Heavy Quark Properties

Comparison of D_{s1} Modes: (K4 π , K6 π)

Helicity of D_{s1} Decay

ICHEP 2010 – Heavy Quark Properties

22 July 2010

 K_S^0

$D_{s1}(2536)$ Signal

20

The PEP-II e^+e^- Storage Rings

J.M. Izen

ICHEP 2010 – Heavy Quark Properties

BR_049

HER Cavities Region 12 22 July 2010

The BABAR Spectrometer

J.M. Izen

Data and Preliminary Selection

- Entire PEP-II / BaBar data: 525 fb⁻¹
 - Most at $\Upsilon(4S)$ and 40 MeV/ c^2 below $\Upsilon(4S)$
 - 16 fb⁻¹ at \u03c7(2S), 31 fb⁻¹ at \u03c7(3S), 4 fb⁻¹ above \u03c7(4S)
- Select events with $D_s D_s(n\gamma)$

Channel First D_s decay mode Second D_s decay mode

(1)	$K^+ K^- \pi^+$	$K^+ K^- \pi^-$
(2)	$K^+ K^- \pi^+$	$K^+ K^- \pi^- \pi^0$
(3)	$K^+ K^- \pi^+$	$K^0_S K^-$

- Topological vertex constraint, K_s mass constraint
- Fit probability > 0.1%
- Candiate m within 2σ
- D_s^* selection: $E\gamma > 30$ MeV, extra γ, π^0 tolerated
 - $\Delta m = m(K^+K^-\pi^+\gamma) m(K^+K^-\pi^+)$ within 2σ

Further $D_s^{(*)}D_s^{(*)}$ Selection

- $m(D_s^{(*)}D_s^{(*)}) < 6.2 \text{ GeV}_N^2$
- Likelihood ratio $L = \sum_{s=1}^{N} log(PDF_s) \sum_{s=1}^{N} log(PDF_b)$
 - Resolve ambiguities, reject backgrounds
 - PDF_s : signal MC
 - PDF_b : data (all cuts but $m(D_s^{(*)}D_s^{(*)}) < 6.2 \text{ GeV}/c^2 \text{ relaxed})$
 - Discriminating variables
 - # extra π⁰s
 - Residual energy in calorimeter (γ_{ISR} removed)
 - Polar angle of $(D_s^{(*)}D_s^{(*)})$ system
 - p_{π^0} (CM) for (*KK* $\pi\pi^{0}$)
 - E_{γ} for candidate D_s^* photons
- $D_s * D_s (*)$ candidates removed from $D_s D_s (*)$ sample

J.M. Izen

ICHEP 2010 – Heavy Quark Properties

ISR Signal: D_s* Transitions

• Clear $D_s^*D_s^{(*)}$ signal in $|M^2_{rec}| < 0.8 \text{ GeV}^2/c^4$ sample

J.M. Izen