

EUTEN CUORICINO and CUORE: present and future of ¹³⁰Te neutrinoless double beta decay searches

Angelo Nucciotti

on behalf of the CUORE collaboration

Dipartimento di Fisica "G. Occhialini",Università di Milano-Bicocca, Italia INFN - Sezione di Milano-Bicocca, Italia

- Neutrinoless double beta decay and neutrino properties
- Calorimetric searches with thermal detectors
- Cuoricino search for ¹³⁰Te neutrinoless double beta decay
 - understanding Cuoricino background

CUORE

- background reduction assessment: the Three Tower Test (TTT)
- ► first step towards CUORE: the CUORE-0 experiment
- CUORE sensitivity expectations
- ► CUORE construction status

Introduction: double beta decay

second order nuclear weak decay of even-even nuclei in *A* even multiplets: ⁴⁸Ca, ⁷⁶Ge, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te, ¹³⁶Xe ...

$\beta\beta$ -2 ν : (A, Z) \rightarrow (A, Z+2) + 2 e^- + 2 $\overline{\nu}_e$

allowed in Standard Model
observed with $\tau_{1/2} > 10^{19}$ years

e

$\beta\beta$ -0 ν : (A, Z) \rightarrow (A, Z+2) + 2 e^{-1}

- not allowed in Standard Model
- expected $\tau_{1/2} > 10^{25}$ years
- one controversial claim to be checked

ββ-0v and neutrino properties

n

- a virtual neutrino is exchanged
 - ► neutrino must have mass to allow helicity non conservation ⇒ △H=2
- ► neutrino must be a **Majorana particle** to allow lepton number non conservation $\Rightarrow \Delta L = 2$

$$\beta\beta - \mathbf{0}\nu \iff \frac{m_{\nu} \neq \mathbf{0}}{\nu \equiv \overline{\nu}}$$

▲ these conditions hold even if other mechanisms are possible and may dominate

light Majorana ν mediated $\beta\beta$ -0 ν decay rate

nuclear structure factor

$F_{N} \equiv G^{0}(Q_{\beta\beta}, Z) |M^{0}|^{2} \qquad \langle m_{\nu} \rangle = \left| \sum_{k} m_{\nu k} \eta_{k} |U_{ek}|^{2} \right|$ phase space nuclear matrix element CP phases* neutrino mixing matrix

A. Nucciotti, ICHEP2010, July 22-28 2010, Paris, France

effective neutrino Majorana mass

A. Nucciotti, ICHEP2010, July 22-28 2010, Paris, France

Cryogenic detectors as calorimeters

Experimental sensitivity for ββ-0ν

The CUORICINO experiment

TeO₂ thermal calorimeters

- Active isotope ¹³⁰Te
 - natural abundance: a.i. = 33.8%
 - ▲ transition energy: $Q_{\beta\beta}$ = 2527.52 keV
 - ▲ *short* expected half life $\langle m_{\nu} \rangle \approx 50 \text{ meV} \iff \tau_{1/2}^{0\nu} \approx 1 \div 6 \times 10^{26} \text{ y}$
- Absorber material TeO₂
 - Iow heat capacity
 - Iarge crystals available
 - radiopure

CUORICINO experiment @ LNGS

- 62 TeO₂ detectors in the *tower*-like structure foreseen for CUORE
- 11 modules: 4 × 790 g crystals
- 2 modules: 9 × 330 g crystals
- total mass 41 kg (~11 kg ¹³⁰Te)
- lacktriangleright intermediate size $\beta\beta$ experiment
- test for radioactivity

8

CUORICINO site at LNGS

underground in Gran Sasso National Laboratory (Italy) under 1400 m of rock (\approx 3600 m water equivalent)

The CUORICINO set-up

62

Cuoricino tower.

CUORICINO final results

- is solution
- run from April 2003 to June 2008 (RUN II 05/2004-06/2008: duty cycle ~45%)
- total exposure 19.75 kg (¹³⁰Te) × years
- energy resolution FWHM $\Delta E = 8$ keV at $Q_{\beta\beta}$ ($\sigma_{E}=1.3\%$)
- anti-coincidence applied to reduce surface U/Th background and external γ s
- background mainly from U/Th on Cu and TeO₂ surfaces (α and β)
 - ► $b \approx 0.169$ c/keV/kg/y at $Q_{\beta\beta}$

How to improve CUORICINO sensitivity on ββ-0ν

CUORE

- CUORE: Cryogenic Underground Observatory for Rare Events
- improve $\times 10$ the Cuoricino sensitivity on $\langle m_{\nu} \rangle$
- i.e. improve $\times 100$ the Cuoricino sensitivity on τ_{y_2}
 - increase total detector mass $M \times 18$
 - 988 crystal natural TeO₂ 750 g crystals \Rightarrow total mass 740 kg TeO₂ \Rightarrow 200 kg of ¹³⁰Te
 - ▶ increase measuring time $t_{meas} \times 5$
 - improve duty cycle
 - reduce background bkg ÷100
 - improve shielding and material selection
 - better surface cleaning
 - improve detector design
 - use coincidence cuts

A. Nucciotti, ICHEP2010, July 22-28 2010, Paris, France

13

 $\sum (\tau_{1/2}^{0\nu}) \propto \sqrt{\frac{M t_{meas}}{\Delta E \cdot bkg}}$

CUORE site at LNGS

CUORE sensitivity potential

Understanding CUORICINO background

α radioactivity: copper surface cleaning

- detector design minimizes the amount of copper between crystals
- copper machining by EDM
- advanced surface cleaning @ Legnaro
- detector assembly in clean-room and anti-radon box

cleaning procedure for Copper pieces facing the detectors (TECM)

- Tumbling
- Electrochemical
- Chemical
- Magnetron sputtering
- U/S cleaning between each step

Surface cleaning procedure validation

CUORE background expectations

- B
- from tests (Hall C and TTT) on crystals and copper surfaces cleaning
 - reduction of crystal surface contamination of a factor ~5
 - reduction of continuum background in 3-4 MeV region of a factor ~2
- from strict material selection
- from improved **detector geometry** (→ better coincidence cuts)
- from improved lead passive shielding against environmental γ s

presently <u>MC projected</u> bkg [10⁻³ c/kg/kev/y]:

- **20**÷**40** from copper surface (α)
- < 3 from crystal surface (α , β , γ)
- < 2 from detector bulk contaminations (γ , β)
- < 10 from experimental set-up (γ)
- < 0.5 from environment (γ , n, μ)
 - within a factor **2**÷**4** from the
- CUORE target background < 0.01 c/kg/kev/y
- more work is in progress to further improve the CUORE expected background
 - control of crystal surface and bulk contamination
 - improve copper surface cleaning
 - A. Nucciotti, ICHEP2010, July 22-28 2010, Paris, France 19

CUORE-0

CUORE-0 will be the first CUORE tower

- it will be operated in the CUORICINO experimental set-up
- assembly procedure test
- cleaning procedure and radioactivity achievement test
- sensitivity will soon overtake CUORICINO

MC extrapolated background at $Q_{\beta\beta}$

 $\begin{array}{ll} \gamma \mbox{ (Hall A set-up)} & 0.048 \pm 0.005 \mbox{ c/keV/kg/y} \\ \mbox{surface (from TTT)} & 0.048 \pm 0.009 \mbox{ c/keV/kg/y} \\ \mbox{ total bkg} \leq \mbox{0.12 \mbox{ c/keV/kg/y} at } 2\sigma \end{array}$

TeO₂ crystal production / 1

SICCAS (Shangai, China)

- CUORE dedicated crystal growth facility
- CUORE dedicate Clean Room for
 - cutting, grinding, shaping, orienting, lapping
 - final surface processing and packaging

1) Kushan Jincheng Chemical Reagent Co. Ltd

high purity grade TeO2 powder production unit

TeO₂ crystal production / 2

CUORE cryostat/2

CUORE Dilution Unit

CUORE Hut: external shielding and clean room

CUORE Hut

CUORE schedule

ASSEMBLY TABLE OVERNEW

(MOTION ONTY)

- Cryogenic detectors represent a well established technique, very competitive for neutrinoless double beta decay search
- CUORICINO demonstrated the feasibility of CUORE, a next generation calorimeter with high energy resolution and improved background
- **CUORE** is presently being built at LNGS
 - ► it will explore the inverse hierarchy mass region
- CUORE-0 will start in 2011
 - ► it will improve CUORICINO limit
 - ► it will give important information on the achieved background reduction
- CUORE is planned to start data taking in 2013

is B

Cooling down: 300K - 4K

- 40K shield cooled by the 5 PT415
- IVC cooled by forced helium flow and the 5 PT415
- helium cooled by up to 3 GM AL600 (600W@77K)
- helium circulated by 2 roots

Cooling down: 300K - 4K

Cryogenics: detector calibration system

Individual energy calibration of all 988 bolometers

The main issue: background / 1

is B

- Cuoricino background spectrum
- γ background from external sources (²³²Th)

CUORICINO background MC reconstruction ------

A. Faessler et al.: arXiv 0810.5733