The excited hadron spectrum in lattice QCD using a new variance reduction method

Colin Morningstar
(Carnegie Mellon University)
ICHEP 2010 , Paris, France
July 23, 2010

Overview

- overarching goal \rightarrow obtain stationary state energies of QCD in cubic boxes (periodic b.c.) of various sizes using Monte Carlo method
- key points of talk:
- good single hadron operators for various momenta now selected in nearly all light baryon and meson sectors
- to get spectrum for lighter quark masses multi-hadron operators needed \rightarrow slice-to-slice quark propagators recent technology breakthrough \rightarrow new quark smearing with improved variance reduction
- interpretation of finite-volume energies
- spectrum matching to construct effective hadron theory?

Dramatis Personae

- current collaborators:

Justin Foley, David Lenkner, Colin Morningstar, Ricky Wong (CMU)

- Keisuke Jimmy Juge (U. of Pacific)
- John Bulava (DESY, Zeuthen)
- Mike Peardon, (Trinity Coll. Dublin)
- Steve Wallace (U. Maryland)
- B. Joo (JLab)

Excited-state energies from Monte Carlo

- extracting excited-state energies requires matrix of correlators
for a given $N \times N$ correlator matrix $C_{\alpha \beta}(t)=\langle 0| O_{\alpha}(t) O_{\beta}^{+}(0)|0\rangle$ one defines the N principal correlators $\lambda_{\alpha}\left(t, t_{0}\right)$ as the eigenvalues of

$$
C\left(t_{0}\right)^{-1 / 2} C(t) C\left(t_{0}\right)^{-1 / 2}
$$

where t_{0} (the time defining the "metric") is small

- can show that $\lim _{t \rightarrow \infty} \lambda_{\alpha}\left(t, t_{0}\right)=e^{-\left(t-t_{0}\right) E_{\alpha}}\left(1+e^{-t \Delta E_{\alpha}}\right)$
- N principal effective masses defined by $m_{\alpha}^{\text {eff }}(t)=\ln \left(\frac{\lambda_{\alpha}\left(t, t_{0}\right)}{\lambda_{\alpha}\left(t+1, t_{0}\right)}\right)$ now tend (plateau) to the N lowest-lying stationary-state energies
- calculations done in cubic box (periodic boundary conditions)
- all energies are discrete
- zero-momentum states labeled by irreps of O_{h} point group even in continuum limit

Single-hadron operators

- covariantly-displaced quark fields as building blocks
- group-theoretical projections onto irreps of lattice symmetry group
- displacements of different lengths build up radial structure
- displacements in different directions build up orbital structure

- reference: PRDㅍ2, 094506 (2005)

Quark- and gauge-field smearing

- smeared quark and gluon fields fields \rightarrow dramatically reduced coupling with short wavelength modes
- link-variable smearing (stout links PRD69, 05450I (2004))
- define $C_{\mu}(x)=\sum_{ \pm(\nu \neq \mu)} \rho_{\mu \nu} U_{\nu}(x) U_{\mu}(x+\hat{v}) U_{\nu}^{+}(x+\hat{\mu})$
- spatially isotropic $\quad \rho_{j k}=\rho, \quad \rho_{4 k}=\rho_{k 4}=0$

- exponentiate traceless Hermitian matrix

$$
\Omega_{\mu}=C_{\mu} U_{\mu}^{+} \quad Q_{\mu}=\frac{i}{2}\left(\Omega_{\mu}^{+}-\Omega_{\mu}\right)-\frac{i}{2 N} \operatorname{Tr}\left(\Omega_{\mu}^{+}-\Omega_{\mu}\right)
$$

- iterate

$$
{ }_{{ }_{n}{ }_{\mu}^{(n+1)}=\exp \left(i Q_{\mu}^{(n)}\right) U_{\mu}^{(n)},}
$$

$$
U_{\mu} \rightarrow U_{\mu}^{(1)} \rightarrow \cdots \rightarrow U_{\mu}^{(n)} \stackrel{\mu}{\equiv} \widetilde{U}_{\mu}
$$

- initial quark-field smearing (Laplacian using smeared gauge field)

$$
\tilde{\psi}(x)=\left(1+\frac{\sigma_{s}}{4 n_{\sigma}} \tilde{\Delta}\right)^{n_{\sigma}} \psi(x)
$$

Operator selection

- operator construction leads to very large number of operators
- rules of thumb for "pruning" operator sets
. noise is the enemy!
- prune first using intrinsic noise (diagonal correlators)
a prune next within operator types (single-site, singly-displaced, etc.) based on condition number of
- prune across all operators based on condition number
- best to keep a variety of different types of operators, as long as condition numbers maintained

$$
\hat{C}_{i j}(t)=\frac{C_{i j}(t)}{\sqrt{C_{i i}(t) C_{j j}(t)}}, \quad t=1
$$

- typically use 16 operators to get 8 lowest lying levels

Nucleons

- $N_{f}=2$ on $24^{3} \times 64$ anisotropic clover lattice, $a_{s} \sim 0$. I I fm, $a_{s} / a_{t} \sim 3$
- Left: $m_{\pi}=578 \mathrm{MeV}$ Right: $\mathrm{m}_{\pi}=416 \mathrm{MeV} \operatorname{PRD} 79,034505$ (2009)

- multi-hadron thresholds above show need for multi-hadron operators to go to lower pion masses!!

Nucleon operator pruning

- $N_{f}=2+1$ on $16^{3} \times 128$ lattice, $m_{\pi}=380 \mathrm{MeV}$ (100 configs, 32 eigvecs)

Delta operator pruning

- $N_{f}=2+1$ on $16^{3} \times 128$ lattice, $m_{\pi}=380 \mathrm{MeV}$ (48| configs, 32 eigvecs)

Sigma operator pruning

$N_{f}=2+1$ on $16^{3} \times 128$ lattice, $m_{\pi}=380 \mathrm{MeV}$ (100 configs, 32 eigvecs)

Isovector G-parity odd mesons

- $N_{f}=2+1$ on $16^{3} \times 128$ lattice, $m_{\pi}=380 \mathrm{MeV}$ (100 configs, 32 eigvecs)

a mesons
π mesons

Kaons

$N_{f}=2+I$ on $16^{3} \times 128$ lattice, $m_{\pi}=380 \mathrm{MeV}$ (100 configs, 32 eigvecs)

Multij-hadron states

- to extract $n^{\text {th }}$ level using correlator matrix method, must first extract all levels $0, I, \ldots, n$ - I below it
- as quark mass gets lighter, more and more multi-hadron states lie below the resonance energies of interest
- need multi-hadron operators to reliably extract energies of the multihadron states
need the quark propagators from all sites on one time slice to all sites on another time slice

Spatial summations

- baryon at rest is operator of form

$$
B(\vec{p}=0, t)=\frac{1}{V} \sum_{\vec{x}} \varphi_{B}(\vec{x}, t)
$$

- baryon correlator has a double spatial sum

$$
\langle 0| \bar{B}(\vec{p}=0, t) B(\vec{p}=0,0)|0\rangle=\frac{1}{V^{2}} \sum_{\vec{x}, \vec{y}}\langle 0| \bar{\varphi}_{B}(\vec{x}, t) \varphi_{B}(\vec{y}, 0)|0\rangle
$$

- computing all elements of propagators exactly not feasible since Dirac matrix M is huge $\quad N_{\text {rows }}=N_{\text {columns }}=N_{x} N_{y} N_{z} N_{t} \times N_{\text {spin }} \times N_{\text {color }}$
- for $32^{3} \times 128$ lattice, $N_{\text {rows }}>50$ million
- compute solution vectors x in $M x=y$ for handful of source vectors y
- translational invariance can limit summation over source site to a single site for local operators

$$
\langle 0| \bar{B}(\vec{p}=0, t) B(\vec{p}=0,0)|0\rangle=\frac{1}{V} \sum_{\vec{x}}\langle 0| \bar{\varphi}_{B}(\vec{x}, t) \varphi_{B}(0,0)|0\rangle
$$

Slice-to-slice quark propagators

- good baryon-meson operator of total zero momentum has form

$$
B(\vec{p}, t) M(-\vec{p}, t)=\frac{1}{V^{2}} \sum_{\vec{x}, \vec{y}} \varphi_{B}(\vec{x}, t) \varphi_{M}(\vec{y}, t) e^{\ddot{p} \cdot(\vec{x}-\vec{y})}
$$

- cannot limit source to single site for multi-hadron operators
- quark propagator elements from all spatial sites to all spatial sites are needed!
- resort to stochastic estimations

Stochastic estimation

quark propagator is just inverse of Dirac matrix M

- noise vectors η satisfying $E\left(\eta_{i}\right)=0$ and $E\left(\eta_{i} \eta_{j}^{*}\right)=\delta_{i j}$ are useful for stochastic estimates of inverse of a matrix M
- Z_{4} noise is used $\{1, i,-1,-i\}$
- define $X(\eta)=M^{-1} \eta$ then

$$
E\left(X_{i} \eta_{j}^{*}\right)=E\left(\sum_{k} M_{i k}^{-1} \eta_{k} \eta_{j}^{*}\right)=\sum_{k} M_{i k}^{-1} E\left(\eta_{k} \eta_{j}^{*}\right)=\sum_{k} M_{i k}^{-1} \delta_{k j}=M_{i j}^{-1}
$$

- if can solve $M X^{(r)}=\eta^{(r)}$ for each of N_{R} noise vectors $\eta^{(r)}$ then we have a Monte Carlo estimate of all elements of M^{-1} :

$$
M_{i j}^{-1} \approx \frac{1}{N_{R}} \sum_{r=1}^{N_{R}} X_{i}^{(r)} \eta_{j}^{(r))^{*}}
$$

- variances in above estimates usually unacceptably large
- introduce variance reduction using source dilution

Source dilution for single matrix inverse

dilution introduces a complete set of projections:

$$
p^{(a)} p^{(b)}=\delta^{a b} p^{(a)}, \quad \sum_{a} p^{(a)}=1, \quad P^{(a) \dagger}=P^{(a)}
$$

observe that

$$
\begin{aligned}
& M_{i j}^{-1}=M_{i k}^{-1} \delta_{k j}=\sum_{a} M_{i k}^{-1} P_{k j}^{(a)}=\sum_{a} M_{i k}^{-1} P_{k k^{\prime}}^{(a)} \delta_{k^{\prime} j} P_{j j}^{(a)} \\
& =\sum_{a} M_{i k}^{-1} P_{k k^{\prime}}^{(a)} E\left(\eta_{k^{\prime}} \eta_{j^{\prime}}^{*}\right) P_{j j^{\prime}}^{(a)}=\sum_{a} M_{i k}^{-1} E\left(P_{k k^{\prime}}^{(a)} \eta_{k^{\prime}} \eta_{j^{\prime}}^{*} P_{j j^{\prime}}^{(a)}\right)
\end{aligned}
$$

- define $\eta_{k}^{[a]}=P_{k k^{\prime}}^{(a)} \eta_{k^{\prime}}, \quad \eta_{j}^{[a]^{*}}=\eta_{j^{*}}^{*} P_{j j}^{(a)}, \quad X_{k}^{[a]}=M_{k j}^{-1} \eta_{j}^{[a]}$
so that

$$
M_{i j}^{-1}=\sum_{a} E\left(X_{i}^{[a]} \eta_{j}^{[a]^{*}}\right)
$$

- Monte Carlo estimate is now

$$
M_{i j}^{-1} \approx \frac{1}{N_{R}} \sum_{r=1}^{N_{R}} \sum_{a} X_{i}^{(r)[a]} \eta_{j}^{(r)[a]^{*}}
$$

- $\sum_{a} \eta_{i}^{[a]} \eta_{j}^{[a]^{*}}$ has same expected value as $\eta_{i} \eta_{j}^{*}$, but reduced variance (statistical zeros \rightarrow exact)

Earlier schemes

- Introduce Z_{N} noise in color, spin, space, time

$$
\eta_{a \alpha}(\vec{x}, t)
$$

- Time dilution (particularly effective)

$$
P_{a \alpha ; b \beta}^{(B)}\left(\vec{x}, t ; \vec{y}, t^{\prime}\right)=\delta_{a b} \delta_{\alpha \beta} \delta(\vec{x}, \vec{y}) \delta_{B t} \delta_{B t^{\prime}}, \quad B=0,1, \ldots, N_{t}-1
$$

- Spin dilution

$$
P_{a \alpha ; b \beta}^{(B)}\left(\vec{x}, t ; \vec{y}, t^{\prime}\right)=\delta_{a b} \delta_{B \alpha} \delta_{B \beta} \delta(\vec{x}, \vec{y}) \delta_{t t^{\prime}}, \quad B=0,1,2,3
$$

- Color dilution

$$
P_{a \alpha ; b \beta}^{(B)}\left(\vec{x}, t ; \vec{y}, t^{\prime}\right)=\delta_{B a} \delta_{B b} \delta_{\alpha \beta} \delta(\vec{x}, \vec{y}) \delta_{t t^{\prime}}, \quad B=0,1,2
$$

- Spatial dilutions
- even-odd

Dilution tests (old method)

100 quenched configs, $12^{3} \times 48$ anisotropic Wilson lattice

Laplacian Heaviside quark-field smearing

new quark-field smearing method PRD80, 054506 (2009)

- judicious choice of quark-field smearing makes exact computations with all-to-all quark propagators possible (on small volumes)
to date, quark field smeared using covariant Laplacian

$$
\tilde{\psi}(x)=\left(1+\frac{\sigma_{s}}{4 n_{\sigma}} \tilde{\Delta}\right)^{n_{\sigma}} \psi(x)
$$

- express in term of eigenvectors/eigenvalues of Laplacian

$$
\begin{aligned}
\tilde{\psi}(x) & =\left(1+\frac{\sigma_{s}}{4 n_{\sigma}} \tilde{\Delta}\right)^{n_{\sigma}} \sum_{k}\left|\varphi_{k}\right\rangle\left\langle\varphi_{k}\right| \psi(x) \\
& =\sum_{k}\left(1+\frac{\sigma_{s} \lambda_{k}}{4 n_{\sigma}}\right)^{n_{\sigma}}\left|\varphi_{k}\right\rangle\left\langle\varphi_{k}\right| \psi(x)
\end{aligned}
$$

- truncate sum and set weights to unity \rightarrow Laplacian Heaviside

Getting to know the Laplacian

- spectrum of the covariant Laplacian
- left: dependence on lattice size; right: dependence on link smearing

Choosing the smearing cut-off

- Laplacian Heaviside (Laph) quark smearing

$$
\begin{aligned}
\tilde{\psi}(x) & =\Theta\left(\sigma_{s}^{2}+\tilde{\Delta}\right) \psi(x) \\
& \approx \sum_{k=1}^{N_{\max }}\left|\varphi_{k}\right\rangle\left\langle\varphi_{k}\right| \psi(x)
\end{aligned}
$$

- choose smearing cut-off based on minimizing excited-state contamination, keep noise small
- behavior of nucleon $t=\mid$ effective masses

Tests of Laplacian Heaviside smearing

comparison of ρ-meson effective masses using same number of gauge-field configurations

- typically need about 32 modes on 16^{3} lattice
- about 128 modes on 24^{3} lattice

Stochastic estimation of quark propagators

- new Laph quark smearing method allows exact computation of all-toall quark propagators on small lattices
- but number of Laplacian eigenvectors needed becomes prohibitively large on large lattices
- 128 modes needed on 24^{3} lattice
- computational method is rather cumbersome, too
- provides improved variance reduction of stochastic estimation

New stochastic Laph method

- Introduce Z_{N} noise in Laph subspace

$$
\rho_{\alpha k}(t) \quad t=\text { time, } \alpha=\operatorname{spin}, k=\text { eigenvector number }
$$

- Time dilution (particularly effective)

$$
P_{\alpha k ; \beta l}^{(B)}\left(t ; t^{\prime}\right)=\delta_{k l} \delta_{\alpha \beta} \delta_{B t} \delta_{B t^{\prime}}, \quad B=0,1, \ldots, N_{t}-1
$$

- Spin dilution

$$
P_{\alpha k ; \beta l}^{(B)}\left(t ; t^{\prime}\right)=\delta_{k l} \delta_{B \alpha} \delta_{B \beta} \delta_{t^{\prime}}, \quad B=0,1,2,3
$$

- Laplacian eigenvector dilution
a define $P_{\alpha k ; \beta l}^{(B)}\left(t ; t^{\prime}\right)=\delta_{B k} \delta_{B l} \delta_{\alpha \beta} \delta_{t^{\prime}}, \quad B=0,1,2, N_{\text {eig }}-1$
- group projectors together by blocking as interlaced

Old stochastic versus new stochastic

new method (open symbols) has dramatically decreased variance test using a triply-displaced-T nucleon operator

Old stochastic versus new stochastic (zoom in)

zoom in of triply-displaced-T nucleon plot on last slide

Old stochastic versus new stochastic

comparison using single-site π operator

Old stochastic versus new stochastic

zoom in of π plot on previous slide

Mild volume dependence

16^{3} lattice versus 20^{3} lattice, both old and new stochastic methods test using triply-displaced-T nucleon operator

Mild volume dependence
zoom in of plot on previous slide

Source-sink factorization

- baryon correlator has form
- stochastic estimates with dilution
- define

$$
\begin{aligned}
C_{\bar{\Pi}} \approx & \frac{1}{N_{R}} \sum_{r} \sum_{d_{A} d_{B} d_{C}} c_{i j k}^{(l)} c_{i \bar{j} \bar{j} k}^{(\bar{T}) *}\left(\varphi_{i}^{(A r)\left[d_{A}\right]} \eta_{\bar{i}}^{(A r)\left[d_{A}\right]^{*}}\right) \\
& \times\left(\varphi_{j}^{(B r)\left[d_{B}\right]} \eta_{\bar{j}}^{(B r)\left[d_{B}\right]^{*}}\right)\left(\varphi_{k}^{(C r)\left[d_{C}\right]} \eta_{\bar{k}}^{(C r)\left[d_{C}\right]^{*}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma_{l}^{(r)\left[d_{A} d_{B} d_{C}\right]}=c_{i j k}^{(l)} \varphi_{i}^{(A r)\left[d_{A}\right]} \varphi_{j}^{(B r)\left[d_{B}\right]} \varphi_{k}^{\left(C_{r}\right)\left[d_{C}\right]} \\
& \Omega_{l}^{(r)\left[d_{A} d_{B} d_{C}\right]}=c_{i j k}^{(l)} \eta_{i}^{(A r)\left[d_{A}\right]} \eta_{j}^{(B r)\left[d_{B}\right]} \eta_{k}^{(C r)\left[d_{C}\right]}
\end{aligned}
$$

- correlator becomes dot product of source vector with sink vector

$$
C_{\bar{\Pi}} \approx \frac{1}{N_{R}} \sum_{r} \sum_{d_{d} d_{d} d_{C}} \Gamma_{l}^{(r)\left[d_{d} d_{d} d_{C}\right]} \Omega_{\bar{l}}^{(r)\left[d_{d} d_{d} d_{C}\right]^{*}}
$$

store $A B C$ permutations to handle Wick orderings

Moving π and a mesons

- first step towards including multi-hadron operators:
- moving single hadrons
- results below have one unit of on-axis momentum
- projections onto space group irreps (see J. Foley talk)

Same-time quark lines

- Last step to finite-box spectra: same time t-to-t quark lines

First results with t-to-t diagrams

- $24^{3} \times 128$ lattice: dilution schemes (TF,SF,LI8) (TII6,SF,LI8)
- I 12 eigenvectors, local operators only

Results at lighter pion mass

- $24^{3} \times 128$ lattice: dilution schemes (TF,SF,LI8) (TII6,SF,LI8)
- I 12 eigenvectors, local operators only

Results at lighter pion mass (cont'd)

- $24^{3} \mathrm{x}$ I 28 lattice: dilution schemes (TF,SF,LI8) (TII 6,SF,LI8)
- I 12 eigenvectors, local operators only

Summary

- goal \rightarrow to wring out hadron spectrum from QCD Lagrangian using Monte Carlo methods on a space-time lattice
- stationary state energies in cubic box
- good single hadron operator selected in nearly all baryon and meson channels
- must extract all states lying below a state of interest
a as pion get lighter, more and more multi-hadron states
- multi-hadron operators \rightarrow relative momenta
- need for slice-to-slice quark propagators
- new stochastic Laph method \rightarrow dramatically reduced variances
- currently running two pion tests

