

Hard exclusive processes in the backward region

J.P. Lansberg Ecole Polytechnique - CPHT

Collaborative work with B. Pasquini, B. Pire and L. Szymanowski,

J.P. Lansberg (Ecole Polytechnique - CPHT)

Backward Hard Exclusive Processes

July 22, 2010 1 / 14

- Let us analyse Hard Electroproduction of a meson

J.P. Lansberg (Ecole Polytechnique - CPHT)

- Let us analyse Hard Electroproduction of a meson

- Let us analyse Hard Electroproduction of a meson

- \rightarrow The kinematics imposes the exchange of 3 quarks in the u channel
- → Factorisation in the generalised Bjorken limit: $Q^2 \rightarrow \infty$, u, x fixed

B. Pire, L. Szymanowski, PLB 622:83,2005.

- Let us analyse Hard Electroproduction of a meson

- \blacksquare The kinematics imposes the exchange of 3 quarks in the *u* channel
- → Factorisation in the generalised Bjorken limit: $Q^2 \rightarrow \infty$, u, x fixed

B. Pire, L. Szymanowski, PLB 622:83,2005.

The object factorised from the hard part is a Transition Distribution

Amplitude (TDA)

- Let us analyse Hard Electroproduction of a meson

- \blacksquare The kinematics imposes the exchange of 3 quarks in the *u* channel
- → Factorisation in the generalised Bjorken limit: $Q^2 \rightarrow \infty$, u, x fixed

B. Pire, L. Szymanowski, PLB 622:83,2005.

The object factorised from the hard part is a Transition Distribution

Amplitude (TDA)

→ Interpretation at the amplitude level in the ERBL region (for x_i > 0) Amplitude of probability to find a meson within_the proton ! J.P. Lansberg (Ecole Polytechnique - CPHT) Backward Hard Exclusive Processes July 22, 2010 2 / 14

Where to look for that ?

→ Kinematical coverage for π^+ of the CLAS experiment (for $W \in [1, 2]$ GeV)

K.J. Park et al., PRC77:015208,2008.

→ We are interested in the region where $\cos \theta_{\pi}^{\star}$ is close to -1, *i.e.* $u \simeq 0$

Where to look for that ?

→ Kinematical coverage for π^+ of the CLAS experiment (for $W \in [1, 2]$ GeV)

K.J. Park et al., PRC77:015208,2008.

• • • • • • •

- → We are interested in the region where $\cos \theta_{\pi}^{\star}$ is close to -1, *i.e.* $u \simeq 0$
- \rightarrow The yield should increase when *u* gets closer to 0.

J.P. Lansberg (Ecole Polytechnique - CPHT)

Backward Hard Exclusive Processes

$p \rightarrow \pi$: parametrisation – similarities with the proton DAs

$$\begin{array}{c} \overrightarrow{} p \to \pi \text{ (at Leading twist)} \\ \overrightarrow{} \Delta_{\mathcal{T}} = 0: \ 3 \ \text{TDAs} \ (3 \times p(\uparrow) \to uud(\uparrow\uparrow\downarrow) + \pi) \\ \text{TDA} \end{array} \qquad \qquad \text{DA (C)} \end{array}$$

DA (Chernyak-Zhitnitsky)

 $\begin{aligned} 4\langle \pi^{0} | \epsilon^{ijk} u^{i}_{\alpha}(z_{1}n) u^{\prime}_{\beta}(z_{2}n) d^{k}_{\gamma}(z_{3}n) | p, s_{\rho} \rangle \propto & 4\langle 0 | e^{ijk} u^{i}_{\alpha}(z_{1}n) u^{\prime}_{\beta}(z_{i}, \xi, \Delta^{2}) (\not p \ C)_{\alpha\beta}(N^{+}_{s_{\rho}})_{\gamma} + \\ & A^{\pi^{0}}_{1}(x_{i}, \xi, \Delta^{2}) (\not p \ \gamma^{5}C)_{\alpha\beta}(\gamma^{5}N^{+}_{s_{\rho}})_{\gamma} + \\ & T^{\pi^{0}}_{1}(x_{i}, \xi, \Delta^{2}) (\sigma_{\rho\rho}C)_{\alpha\beta}(\gamma^{\rho}N^{+}_{s_{\rho}})_{\gamma} \end{bmatrix} \end{aligned}$

 $\begin{aligned} 4\langle 0|\epsilon^{ijk} u^{i}_{\alpha}(z_{1}n)u^{j}_{\beta}(z_{2}n)d^{k}_{\gamma}(z_{3}n)|p\rangle \propto \\ & \left[V(x_{i})(\not pC)_{\alpha\beta}(\gamma^{5}N^{+}_{s_{p}})_{\gamma} + \right. \\ & \left.A(x_{i})(\not p\gamma^{5}C)_{\alpha\beta}(N^{+}_{s_{p}})_{\gamma} + \right. \\ & \left.T(x_{i})(i\sigma_{\rho p} C)_{\alpha\beta}(\gamma^{\rho}\gamma^{5}N^{+}_{s_{p}})_{\gamma}\right] \end{aligned}$

$p \rightarrow \pi$: parametrisation – similarities with the proton DAs

$$\begin{array}{c} \overrightarrow{P} \rightarrow \pi \text{ (at Leading twist)} \\ \overrightarrow{P} \Delta_{T} = 0: \ 3 \ \ \text{TDAs} \ (3 \times p(\uparrow) \rightarrow uud(\uparrow\uparrow\downarrow) + \pi) \\ \text{TDA} \end{array} \qquad \qquad \text{DA (C)} \end{array}$$

DA (Chernyak-Zhitnitsky)

$$\begin{aligned} 4\langle \pi^{0}| \epsilon^{ijk} u^{i}_{\alpha}(z_{1}n) u^{j}_{\beta}(z_{2}n) d^{k}_{\gamma}(z_{3}n) |p, s_{\rho} \rangle \propto & 4\langle 0| \epsilon^{ijk} u^{i}_{\alpha}(z_{1}n) u^{j}_{\beta}(z_{2}n) d^{k}_{\gamma}(z_{3}n) |p \rangle \propto \\ \begin{bmatrix} V_{1}^{\pi^{0}}(x_{i}, \xi, \Delta^{2})(\not{p} C)_{\alpha\beta}(N^{+}_{s_{\rho}})\gamma + & \begin{bmatrix} V(x_{i})(\not{p} C)_{\alpha\beta}(\gamma^{5}N^{+}_{s_{\rho}})\gamma + \\ A^{\pi^{0}}_{1}(x_{i}, \xi, \Delta^{2})(\not{p} \gamma^{5}C)_{\alpha\beta}(\gamma^{5}N^{+}_{s_{\rho}})\gamma + & A(x_{i})(\not{p} \gamma^{5}C)_{\alpha\beta}(N^{+}_{s_{\rho}})\gamma + \\ T^{\pi^{0}}_{1}(x_{i}, \xi, \Delta^{2})(\sigma_{\rho\rho}C)_{\alpha\beta}(\gamma^{\rho}N^{+}_{s_{\rho}})\gamma \end{bmatrix} & T(x_{i})(i\sigma_{\rho\rho}C)_{\alpha\beta}(\gamma^{\rho}\gamma^{5}N^{+}_{s_{\rho}})\gamma \end{aligned}$$

$$egin{aligned} V_1^{\pi^0} &
ightarrow D_{\uparrow\downarrow,\uparrow}^{\uparrow} + D_{\downarrow\uparrow,\uparrow}^{\uparrow} & {}^{\mathrm{B.\,Pa}} \ A_1^{\pi^0} &
ightarrow D_{\uparrow\downarrow,\uparrow}^{\uparrow} - D_{\downarrow\uparrow,\uparrow}^{\uparrow} \ T_1^{\pi^0} &
ightarrow D_{\uparrow\uparrow,\downarrow}^{\uparrow} \end{aligned}$$

B. Pasquini et al., PRD 80:014017,2009.

Image: A math a math

$p \rightarrow \pi$: parametrisation – similarities with the proton DAs

$$\begin{array}{c} \stackrel{\rightarrow}{\twoheadrightarrow} p \to \pi \text{ (at Leading twist)} \\ \stackrel{\rightarrow}{\twoheadrightarrow} \Delta_T = 0: \ 3 \ \text{TDAs} \ (3 \times p(\uparrow) \to uud(\uparrow\uparrow\downarrow) + \pi) \\ \text{TDA} \end{array} DA (Chernyak-Zhitnitsky) \end{array}$$

 $\begin{aligned} 4\langle \pi^{0} | \epsilon^{ijk} u^{i}_{\alpha}(z_{1}n) u^{j}_{\beta}(z_{2}n) d^{k}_{\gamma}(z_{3}n) | p, s_{\rho} \rangle \propto & 4\langle 0 | \epsilon^{ijk} u^{i}_{\alpha}(z_{1}n) u^{j}_{\beta}(z_{2}n) d^{k}_{\gamma}(z_{3}n) | p \rangle \propto \\ \begin{bmatrix} V_{1}^{\pi^{0}}(x_{i}, \xi, \Delta^{2})(\not p C)_{\alpha\beta}(N^{+}_{s_{\rho}})_{\gamma} + & \begin{bmatrix} V(x_{i})(\not p C)_{\alpha\beta}(\gamma^{5}N^{+}_{s_{\rho}})_{\gamma} + \\ A^{\pi^{0}}_{1}(x_{i}, \xi, \Delta^{2})(\not p \gamma^{5}C)_{\alpha\beta}(\gamma^{5}N^{+}_{s_{\rho}})_{\gamma} + & A(x_{i})(\not p \gamma^{5}C)_{\alpha\beta}(N^{+}_{s_{\rho}})_{\gamma} + \\ T^{\pi^{0}}_{1}(x_{i}, \xi, \Delta^{2})(\sigma_{\rho\rho}C)_{\alpha\beta}(\gamma^{\rho}N^{+}_{s_{\rho}})_{\gamma} \end{bmatrix} & T(x_{i})(i\sigma_{\rho\rho}C)_{\alpha\beta}(\gamma^{\rho}\gamma^{5}N^{+}_{s_{\rho}})_{\gamma} \end{bmatrix} \end{aligned}$

B. Pasquini et al., PRD 80:014017,2009.

When
$$\Delta_{\mathcal{T}} \neq 0$$
, $D_{\downarrow\uparrow,\downarrow}^{\uparrow} \neq 0$,..., $D_{\downarrow\downarrow,\downarrow}^{\uparrow} \neq 0 \rightarrow 8$ TDAs
($\Delta_{\mathcal{T}}$ is source of angular momentum)

 $V_1^{\pi^0} o D^{\uparrow}_{\uparrow\downarrow,\uparrow} + D^{\uparrow}_{\downarrow\uparrow,\uparrow} \ A_1^{\pi^0} o D^{\uparrow}_{\uparrow\downarrow,\uparrow} - D^{\uparrow}_{\downarrow\uparrow,\uparrow}$

 $T_1^{\pi^0} \rightarrow D_{\uparrow\uparrow}^{\uparrow}$

4

More quantitatively: the pionic content of the proton

JPL, B. Pire, L. Szymanowski, PRD 75:074004, 2007

Let us start with a limiting case: soft pion

$$\begin{split} \langle \pi^{a}(k) | \mathcal{O} | p(p,s) \rangle &= -\frac{i}{f_{\pi}} \langle 0 | [Q_{5}^{a}, \mathcal{O}] | p(p,s) \rangle \\ &+ \frac{ig_{A}}{4f_{\pi}p \cdot k} \sum_{s'} \langle 0 | \mathcal{O} | p(p,s') \rangle \bar{u}(p,s') \not k \gamma_{5} \tau^{a} u(p,s) \end{split}$$

More quantitatively: the pionic content of the proton

JPL, B. Pire, L. Szymanowski, PRD 75:074004, 2007

Let us start with a limiting case: soft pion

→ Direct relation between the TDAs, $\langle \pi^a(k) | \mathcal{O} | p(p,s) \rangle$, and the proton wavefunction (DAs), $\langle 0 | \mathcal{O} | p(p,s) \rangle$

More quantitatively: the pionic content of the proton

JPL, B. Pire, L. Szymanowski, PRD 75:074004, 2007

Let us start with a limiting case: soft pion

$$\langle \pi^{a}(k) | \mathcal{O} | p(p,s) \rangle = -\frac{i}{f_{\pi}} \langle 0 | [Q_{5}^{a}, \mathcal{O}] | p(p,s) \rangle$$

$$+ \frac{ig_{A}}{4f_{\pi}p \cdot k} \sum_{s'} \langle 0 | \mathcal{O} | p(p,s') \rangle \bar{u}(p,s') \not k \gamma_{5} \tau^{a} u(p,s)$$
proton $\bigwedge^{*} x_{1}$

→ Direct relation between the TDAs, $\langle \pi^a(k) | \mathcal{O} | p(p,s) \rangle$, and the proton wavefunction (DAs), $\langle 0 | \mathcal{O} | p(p,s) \rangle$

$$\begin{split} V_{1}^{\pi^{0}}(x_{1}, x_{2}, x_{3}, \xi, \Delta^{2}) & \stackrel{p_{\pi}^{z} \to 0}{\to} \frac{1}{4\xi} V\left(\frac{x_{1}}{2\xi}, \frac{x_{2}}{2\xi}, \frac{x_{3}}{2\xi}\right) \\ A_{1}^{\pi^{0}}(x_{1}, x_{2}, x_{3}, \xi, \Delta^{2}) & \stackrel{p_{\pi}^{z} \to 0}{\to} \frac{1}{4\xi} A\left(\frac{x_{1}}{2\xi}, \frac{x_{2}}{2\xi}, \frac{x_{3}}{2\xi}\right) \\ T_{1}^{\pi^{0}}(x_{1}, x_{2}, x_{3}, \xi, \Delta^{2}) & \stackrel{p_{\pi}^{z} \to 0}{\to} \frac{3}{4\xi} T\left(\frac{x_{1}}{2\xi}, \frac{x_{2}}{2\xi}, \frac{x_{3}}{2\xi}\right) \end{split}$$

 \Rightarrow Similar relations obtained for the proton-pion DAs $\langle 0|\mathcal{O}|\pi(k)p(p,s)\rangle$

V.M Braun et al. PRD75:014021,2007

ightarrow Sufficient to evaluate the backward electroproduction of a pion for $p_\pi^z
ightarrow 0$

→ The amplitude at the Leading-twist accuracy:

$$\mathcal{M}_{s_1s_2}^{\lambda} = -i \frac{(4\pi\alpha_s)^2 \sqrt{4\pi\alpha_{em}} f_N^2}{54 f_\pi Q^4} \overline{u}(p_2, s_2) \not\in (\lambda) \gamma^5 u(p_1, s_1) \\ \times \int_{-1+\xi}^{1+\xi} d^3 x \int_{0}^{1} d^3 y \left(2\sum_{\alpha=1}^7 T_\alpha + \sum_{\alpha=8}^{14} T_\alpha \right)$$

Example:

$$T_{7} = \frac{Q_{d}(2\xi)^{2}[(V_{1}^{\rho\pi^{0}} - A_{1}^{\rho\pi^{0}})(V^{\rho} - A^{\rho})]}{(x_{1} - i\epsilon)(2\xi - x_{1} - i\epsilon)(x_{2} - i\epsilon)y_{1}y_{2}(1 \exists y_{3})} \xrightarrow{P} (z_{1} \exists y_{2}) \xrightarrow{P} (z_{1} \boxtimes P} (z_{1}$$

J.P. Lansberg (Ecole Polytechnique - CPHT)

Backward Hard Exclusive Processes

July 22, 2010 6 / 14

JPL, B. Pire, L. Szymanowski, PRD 75:074004, 2007

(日) (同) (三) (三)

At $\xi = 0.8$ and using CZ Distribution Amplitudes, one gets:

JPL, B. Pire, L. Szymanowski, PRD 75:074004,2007

At $\xi = 0.8$ and using CZ Distribution Amplitudes, one gets:

Much more than the soft limit

The factorised framework is not restricted at all to the soft limit

(日) (同) (三) (三)

Much more than the soft limit

→ The factorised framework is not restricted at all to the soft limit → To go away from $p_{\pi}^{z} = 0$, one needs input from models, such as the pion cloud model, ... B. Pasquini, et al.PRD 80:014017,2009.

Much more than the soft limit

→ The factorised framework is not restricted at all to the soft limit → To go away from $p_{\pi}^{z} = 0$, one needs input from models, such as the pion cloud model, ... B. Pasquini, et al.PRD 80:014017,2009.

 \rightarrow Model-independent predictions

JPL, B. Pire, L. Szymanowski, PRD 75:074004, 2007

Image: A math a math

JPL, B. Pire, L. Szymanowski, PRD 75:074004, 2007

- → Model-independent predictions
 - → Scaling law for the amplitude:

$$\mathcal{M}(Q^2) \propto rac{lpha_{s}^{2}(Q^2)}{Q^4}$$

2/ - 2

JPL, B. Pire, L. Szymanowski, PRD 75:074004, 2007

→ Scaling law for the amplitude:

→ Model-independent predictions

$$\mathcal{M}(Q^2) \propto rac{lpha_{s}^{2}(Q^2)}{Q^4}$$

- Approximate Q^2 -independence of the ratios

$$\frac{\mathcal{M}(\gamma^{\star}p \to p\pi)}{\mathcal{M}(\gamma^{\star}p \to p\gamma)} , \frac{\mathcal{M}(\gamma^{\star}p \to p\pi)}{\mathcal{M}(\gamma^{\star}p \to p\rho)} \text{ and } \frac{\frac{d\sigma(p\bar{p} \to \ell^+\ell^-\pi^0)}{dQ^2}}{\frac{d\sigma(p\bar{p} \to \ell^+\ell^-)}{dQ^2}} \text{(see later)}$$

JPL, B. Pire, L. Szymanowski, PRD 75:074004, 2007

→ Scaling law for the amplitude:

→ Model-independent predictions

$$\mathcal{M}(Q^2) \propto rac{lpha_s^2(Q^2)}{Q^4}$$

- Approximate Q^2 -independence of the ratios

$$\frac{\mathcal{M}(\gamma^{\star}p \to p\pi)}{\mathcal{M}(\gamma^{\star}p \to p\gamma)} , \frac{\mathcal{M}(\gamma^{\star}p \to p\pi)}{\mathcal{M}(\gamma^{\star}p \to p\rho)} \text{ and } \frac{\frac{d\sigma(p\bar{p} \to \ell^+\ell^-\pi^0)}{dQ^2}}{\frac{d\sigma(p\bar{p} \to \ell^+\ell^-)}{dQ^2}} \text{(see later)}$$

 \rightarrow Dominance of $\gamma_T^{\star} p \rightarrow p \pi, \ldots$

July 22, 2010 9 / 14

JPL, et al., work in progress

• Single Transverse Spin Asymmetry:

 $\sigma^{\uparrow} - \sigma^{\downarrow}$ is non zero for complex \mathcal{T} and \mathcal{T}'

JPL, et al., work in progress

• Single Transverse Spin Asymmetry:

 $\sigma^{\uparrow}-\sigma^{\downarrow}$ is non zero for complex ${\cal T}$ and ${\cal T}'$

• Let's look at the third graph contribution:

$$\frac{Q_{u}(2\xi)^{2}[4T_{1}^{\rho\pi^{0}}T^{\rho}+2\frac{\Delta_{T}^{2}}{M^{2}}T_{4}^{\rho\pi^{0}}T^{\rho}]}{(x_{1}-i\epsilon)(2\xi-x_{2}-i\epsilon)(x_{3}-i\epsilon)y_{1}(1-y_{1})y_{3}}$$

JPL, et al., work in progress

• Single Transverse Spin Asymmetry:

 $\sigma^{\uparrow}-\sigma^{\downarrow}$ is non zero for complex ${\cal T}$ and ${\cal T}'$

• Let's look at the third graph contribution:

 $\frac{Q_{u}(2\xi)^{2}[4T_{1}^{\rho\pi^{0}}T^{\rho}+2\frac{\Delta_{T}^{2}}{M^{2}}T_{4}^{\rho\pi^{0}}T^{\rho}]}{(x_{1}-i\epsilon)(2\xi-x_{2}-i\epsilon)(x_{3}-i\epsilon)y_{1}(1-y_{1})y_{3}}$

→ The TDAs $(T_1^{p\pi^0},...)$ and the DAs $(T^p, ...)$ are real valued functions;

- \rightarrow The y-integration does not generate any imaginary part;
- \rightarrow The x-integration may do so, but only if x_i change sign;

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

JPL, et al., work in progress

• Single Transverse Spin Asymmetry:

 $\sigma^{\uparrow}-\sigma^{\downarrow}$ is non zero for complex ${\cal T}$ and ${\cal T}'$

• Let's look at the third graph contribution:

 $\frac{Q_{u}(2\xi)^{2}[4T_{1}^{\rho\pi^{0}}T^{\rho}+2\frac{\Delta_{T}^{2}}{M^{2}}T_{4}^{\rho\pi^{0}}T^{\rho}]}{(x_{1}-i\epsilon)(2\xi-x_{2}-i\epsilon)(x_{3}-i\epsilon)y_{1}(1-y_{1})y_{3}}$

→ The TDAs $(T_1^{p\pi^0},...)$ and the DAs $(T^p, ...)$ are real valued functions;

- → The y-integration does not generate any imaginary part;
- \rightarrow The x-integration may do so, but only if x_i change sign;

• Non vanishing SSA: signal of a non zero DGLAP contribution

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

JPL, et al., work in progress

• Single Transverse Spin Asymmetry:

 $\sigma^{\uparrow}-\sigma^{\downarrow}$ is non zero for complex ${\cal T}$ and ${\cal T}'$

• Let's look at the third graph contribution:

 $\frac{Q_{u}(2\xi)^{2}[4T_{1}^{\rho\pi^{0}}T^{\rho}+2\frac{\Delta_{T}^{2}}{M^{2}}T_{4}^{\rho\pi^{0}}T^{\rho}]}{(x_{1}-i\epsilon)(2\xi-x_{2}-i\epsilon)(x_{3}-i\epsilon)y_{1}(1-y_{1})y_{3}}$

→ The TDAs $(T_1^{p\pi^0},...)$ and the DAs $(T^p, ...)$ are real valued functions;

- \rightarrow The y-integration does not generate any imaginary part;
- \rightarrow The x-integration may do so, but only if x_i change sign;
- Non vanishing SSA: signal of a non zero DGLAP contribution
- One expects a vanishing SSA for (simple) baryon-exchange approaches (including the soft pion limit)

Backward Electroproduction of a meson: existing data

 \rightarrow Data from JLab exist for the π^+

Analysis on-going (K. Park)

 \blacksquare "Visible signal in the yield of ω at 180°"

(G. Huber, Sept. 09)

 \rightarrow Electroduction of η and π^0

(CLAS DVMP: V. Kubarovsky, P. Stoler) η to be modelled

TDAs in exclusive processes at GSI/FAIR

JPL, B. Pire, L. Szymanowski PRD76 :111502(R),2007

 $\rightarrow \bar{p}p \rightarrow \gamma^{\star}\pi^{0}$ can be studied by PANDA Involves the same TDAs as for backward electroproduction In the GPD case, after crossing, we have to deal with GDAs $\bar{p}(p_{\bar{p}})$ f(q) $M_{\rm h}$ k_1 k_3 $\pi(p_{\pi})$

TDAs in exclusive processes at GSI/FAIR

JPL, B. Pire, L. Szymanowski PRD76 :111502(R),2007

くロト く伺下 くまト くまト

→ The same TDAs appear also in $p\bar{p} \rightarrow J/\psi + \pi^0$ Same channel as for h_c studies

July 22, 2010 12 / 14

$\bar{p}p \rightarrow \gamma^{\star} \pi^{0}$ at GSI/FAIR

JPL, B. Pire, L. Szymanowski PRD76 :111502(R),2007

 $ightarrow
m GSI-FAIR: E_{ar p} \leq 15~
m GeV \Rightarrow W^2 \leq 30~
m GeV^2$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 $\bar{p}p \rightarrow \gamma^{\star}\pi^{0}$ at GSI/FAIR

JPL, B. Pire, L. Szymanowski PRD76 :111502(R),2007

→ GSI-FAIR: $E_{\bar{p}} \leq 15 \text{ GeV} \Rightarrow W^2 \leq 30 \text{ GeV}^2$

J.P. Lansberg (Ecole Polytechnique - CPHT)

July 22, 2010 13 / 14

 $\bar{p}p \rightarrow \gamma^{\star}\pi^{0}$ at GSI/FAIR

JPL, B. Pire, L. Szymanowski PRD76 :111502(R),2007

→ GSI-FAIR: $E_{\bar{p}} \leq 15 \text{ GeV} \Rightarrow W^2 \leq 30 \text{ GeV}^2$

→ $\sigma^{\ell^+\ell^-\pi^0}$ (7 < Q² < 8GeV², W² = 10GeV², Δ_T < 0.5GeV) ~ 100fb. → Expected $\int dt \mathcal{L}$ of about 2 fb⁻¹ for a 100-day experiment → Other channels are also of much interest, such as $\bar{p}p \rightarrow \ell^+\ell^-\eta$ or $\bar{p}p \rightarrow \ell^+\ell^-\rho^0$

Summary

- \rightarrow Further quantitative predictions require models
 - ➡ Soft pion limit: OK
 - ➡ Pion Cloud Model: on-going
 - → 4-ple distribution (spectral representation: double distr. for GPD):

K. Semenov et al., to appear.

➡ TDA moments can be computed on the lattice
 ➡ etc.

(日) (周) (三) (三)

Summary

- → Further quantitative predictions require models
 - ➡ Soft pion limit: OK
 - Pion Cloud Model: on-going
 - → 4-ple distribution (spectral representation: double distr. for GPD):

K. Semenov et al., to appear.

- ➡ TDA moments can be computed on the lattice
 ➡ etc.
- → Experimental data are necessary to test the picture and then to extract physics

July 22, 2010 14 / 14

くほと くほと くほと

Summary

- \rightarrow Further quantitative predictions require models
 - ➡ Soft pion limit: OK
 - Pion Cloud Model: on-going
 - → 4-ple distribution (spectral representation: double distr. for GPD):

K. Semenov et al., to appear.

and then to extract physics

- ➡ TDA moments can be computed on the lattice
 ➡ etc.
- \rightarrow Experimental data are necessary to test the picture
- → ...expected from
- → JLab-6 GeV: Backward electroproduction of π , η , ω . Backward DVCS ?
- $\Rightarrow \mathsf{GSI:} \ p\bar{p} \to \gamma^* \pi^0, \ p\bar{p} \to J/\psi \pi^0, \ p\bar{p} \to \gamma^* \gamma, \ \dots$
- ➡ Of course JLab-12 GeV
- \rightarrow COMPASS: $\gamma^* p \rightarrow pJ/\psi$

J.P. Lansberg (Ecole Polytechnique - CPHT)

July 22, 2010 14 / 14