
ICHEP2010
Paris
22-28 July 2010



Unitarity Triangle Analysis (UTA) within and beyond the SM:

(on behalf of the

**Collaboration)** 

www.utfit.org

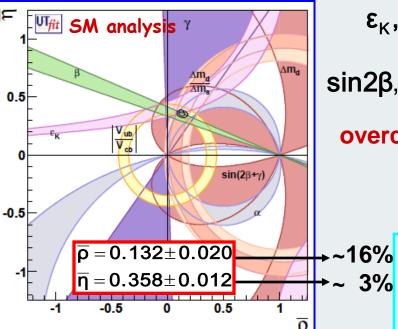
A.Bevan, M.Bona, M.Ciuchini, D.Derkach, E.Franco, V.Lubicz, G.Martinelli, F.Parodi, M.Pierini, C.Schiavi, L.Silvestrini, A.Stocchi, V.Sordini, C.T., V.Vagnoni

# Status of the UTA within the Standard Model (SM)

 $\rightarrow$  high precision and global success (but few tensions: BR(B $\rightarrow$  $\tau$   $\nu$ ), sin(2 $\beta$ ),  $\epsilon_{K}$ )

# Status of the UTA beyond the SM

→ news on the hint of New Physics (NP) in the B<sub>s</sub> system


Cecilia Tarantino
Università Roma Tre and INFN

#### The UTA within the Standard Model



## The experimental constraints:

3%



$$\epsilon_{\rm K}, \Delta m_{\rm d}, \left| \frac{\Delta m_{\rm s}}{\Delta m_{\rm d}} \right|, \left| \frac{V_{\rm ub}}{V_{\rm cb}} \right|$$
 relying on theoretical calculations of hadronic matrix elements

 $sin 2\beta, cos 2\beta, \alpha, \gamma$  (  $2\beta + \gamma$ ) independent from theoretical calculations of hadronic parameters

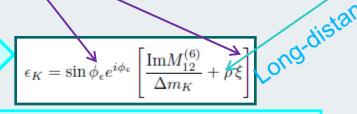
overconstrain the CKM parameters consistently

The UTA has established that the CKM matrix is the dominant source of flavour mixing and CP violation



# From a closer look




From the UTA (excluding its exp. constraint)

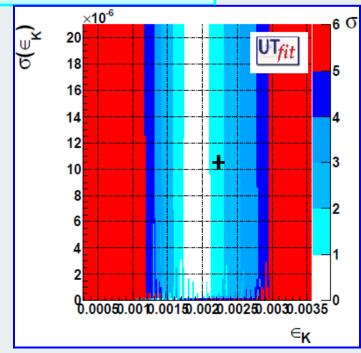
|                                                | Prediction  | Measurement | Pull   |
|------------------------------------------------|-------------|-------------|--------|
| sin2β                                          | 0.771±0.036 | 0.654±0.026 | 2.6 ←  |
| γ                                              | 69.6°±3.1°  | 74°±11°     | <1     |
| α                                              | 85.4°±3.7°  | 91.4°±6.1°  | <1     |
| V <sub>cb</sub>   · 10 <sup>3</sup>            | 42.69±0.99  | 40.83±0.45  | +1.6   |
| $ V_{ub}  \cdot 10^3$                          | 3.55±0.14   | 3.76±0.20   | <1     |
| $\epsilon_{K} \cdot 10^{3}$                    | 1.92±0.18   | 2.230±0.010 | -1.7 ← |
| BR(B $\rightarrow \tau \nu$ )· 10 <sup>4</sup> | 0.805±0.071 | 1.72±0.28   | -3.2 ← |



Buras&Guadagnoli (0805.3887)+Buras&Guadagnoli&Isidori (1002.3612):

decrease of the SM prediction of  $\varepsilon_K$  by ~6%




Improved accuracy in B<sub>K</sub> from Lattice QCD, thanks to the continuum limit in unquenched studies (smaller though compatible values w.r.t few years ago)

$$\hat{B}_K = 0.731(7)(35)$$

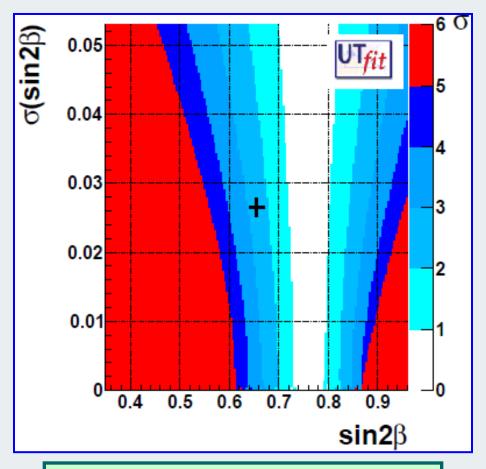
Average by V.Lubicz in PoS Lattice09

(1004.3473)

| Lattice '96 | $\hat{B}_K = 0.90 \pm 0.03 \pm 0.15$ |
|-------------|--------------------------------------|
| Lattice '00 | $\hat{B}_K = 0.86 \pm 0.06 \pm 0.14$ |
| Lattice '05 | $\hat{B}_K = 0.79 \pm 0.04 \pm 0.08$ |
| Lattice '08 | $\hat{B}_K = 0.723 \pm 0.037$        |



#### **NEWS:**


Brod&Gorbahn (1007.0684): NNLO QCD analysis of the charm-top contribution in box diagrams (3% enhancement of  $\varepsilon_{\rm K}$ )

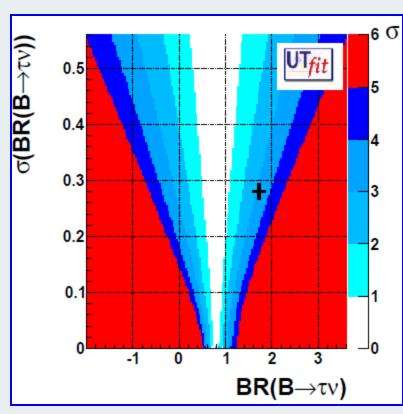
#### **NEXT FUTURE:**

Further few percents could come from dimension-8 operators: ~m<sub>K</sub><sup>2</sup>/m<sub>c</sub><sup>2</sup> corrections (calculation in progress)

sin2β






The indirect determination of sin(2 $\beta$ ) turns out to be at ~2.6  $\sigma$  from the experimental measurement (the theory error in the extraction from B $\rightarrow$  J $_{\psi}$  K $_{S}$  is well under control)



BR(B
$$\rightarrow$$
  $\tau$   $\nu$ )<sub>SM</sub> = (0.805 0.071)•10<sup>-4</sup> [UTfit, update of 0908.3470] turns out to be smaller by ~3.2  $\sigma$  than the experimental value BR(B $\rightarrow$   $\tau$   $\nu$ )<sub>exp</sub> = (1.72±0.28)•10<sup>-4</sup>

BaBar Semileptonic tag (0912.2453)
BaBar Hadronic tag (0708.2260)
[new result is available since YESTERDAY: see talk by Guglielmo De Nardo]

The experimental state of the art



Belle Semileptonic tag (1006.4201) [full data set analysis is on the way: Belle Hadronic tag (hep-ex/0604018) see talk by Jacek Stypula]

$$BR(B \to \tau \nu) = \frac{G_F^2 m_B m_\tau^2}{8\pi} \left( 1 - \frac{m_\tau^2}{m_B^2} \right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

- •BR(B $\to \tau \nu$ )<sub>exp</sub> prefers a large value for  $|V_{ub}|$  (f<sub>B</sub> under control and improved by the UTA)
- •But a shift in the central value of  $|V_{ub}|$  would not solve the  $\beta$  tension
  - the debate on V<sub>ub</sub> (excl. vs incl, various models…) is not enough to explain all

### The UTA beyond the Standard Model





## Model-independent UTA: bounds on deviations from the SM (+CKM)

- •Parametrize generic NP in  $\Delta$ F=2 processes, in all sectors
- Use all available experimental info
- •Fit simultaneously the CKM and NP parameters

#### From this (NP) analysis:

$$\overline{\rho}=0.135\pm0.040$$

 $\overline{\eta} = 0.374 \pm 0.026$ 

In good agreement with the results

from the SM analysis 
$$\overline{\rho} = 0.132 \pm 0.020$$

$$\bar{n} = 0.358 \pm 0.012$$

# NP contributions in the mixing amplitudes:

$$H^{\Delta F=2}=m+\frac{i}{2}\Gamma$$
  $A=m_{12}=\langle M|m|\overline{M}\rangle$   $\Gamma_{12}=\langle M|\Gamma|\overline{M}\rangle$ 

K mixing amplitude (2 real parameters):

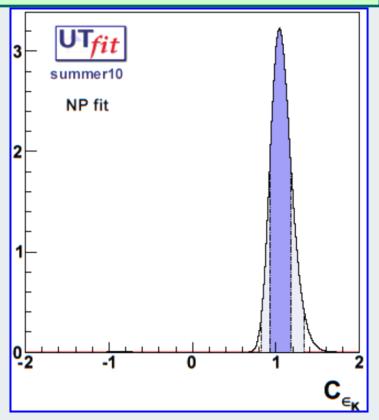
$$\operatorname{Re} A^{K} = C_{\Delta m_{K}} \operatorname{Re} A_{K}^{SM} \operatorname{Im} A_{K} = C_{\S} \operatorname{m} A_{K}^{SM}$$

B<sub>d</sub> and B<sub>s</sub> mixing amplitudes (2+2 real parameters):

$$A_{q}e^{2i\phi_{q}} = C_{B_{q}}e^{2i\phi_{B}}A_{q}^{SM}e^{2i\phi_{q}^{SM}} = \left(1 + \frac{A_{q}^{NP}}{A_{q}^{SM}}e^{2i(\phi_{q}^{NP} - \phi_{q}^{SM})}\right)A_{q}^{SM}e^{2i\phi_{q}^{SM}}$$

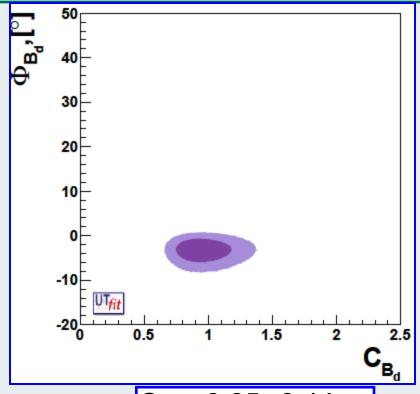
# $\begin{array}{c|c} \text{SM} & \text{SM+NP} \\ \hline (\bigvee_{ub}/\bigvee_{cb})^{\text{SM}} & \text{tree level} & (\bigvee_{ub}/\bigvee_{cb})^{\text{SM}} \\ \hline \beta^{\text{SM}} & \beta^{\text{SM}} + \phi_{\text{Bd}} \end{array}$

**Bd Mixing** 


$$\Delta m_d$$
  $C_{Bd}\Delta m_d$   $\Delta m_s^{SM}$   $Bs Mixing$   $C_{Bs}\Delta m_s^{SM}$ 

$$\epsilon_{\rm K}^{\rm SM}$$
 K Mixing  $\epsilon_{\rm K}^{\rm SM}$   $\epsilon_{\rm K}^{\rm SM}$   $\epsilon_{\rm K}^{\rm SM}$   $\epsilon_{\rm M}^{\rm SM}$ 

## Results for the K and B<sub>d</sub> mixing amplitudes




For K-K mixing, the NP parameters are found in agreement with the SM expectations



$$C_{\varepsilon_{K}} = 1.05 \pm 0.12$$
  
([0.82,1.34]  $\leftrightarrow$  95%)

For  $B_d$ - $\bar{B}_d$  mixing, the mixing phase  $\phi_{Bd}$  is found 1.8  $\sigma$  away from the SM expectation (reflecting the tension in sin2 $\beta$ )



$$C_{B_d} = 0.95 \pm 0.14$$
  
 $([0.70, 1.27] \leftrightarrow 95\%)$   
 $\Phi_{B_d} = (-3.1 \pm 1.7)^{\circ}$   
 $([-7.0, 0.1]^{\circ} \leftrightarrow 95\%)$ 

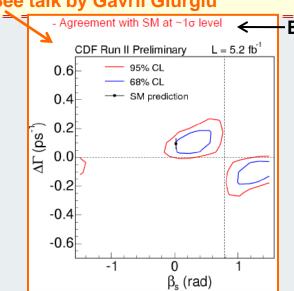
# Results for the B<sub>s</sub> mixing amplitude: INTERESTING NEWS NEW QUESTION MARKS



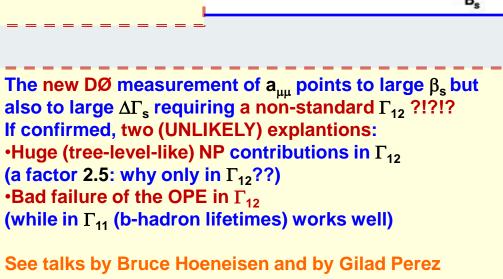
# In 2009, by combining CDF and DØ results for $\phi_{Bs}$ :

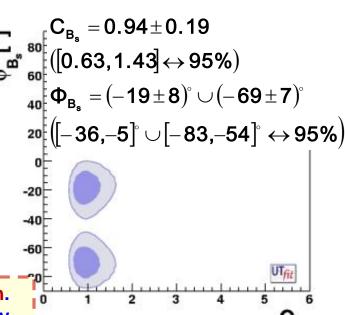
**UTfit:** 2.9σ (update of 0803.0659)

HFAG: 2.2σ (0808.1297)


**CKMfitter: 2.5σ (0810.3139)** 

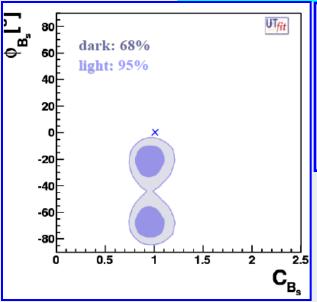
Tevatron B w.g.: 2.1σ (http://tevbwg.fnal.gov)


More than 2<sub>o</sub> deviation for every statistical approach!


## In 2010, two surprising news:

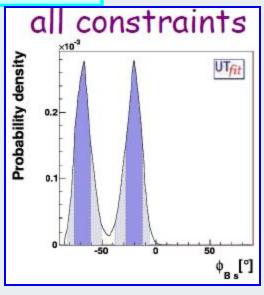
The new CDF measurement reduces the significance of the deviation. The likelihood is not yet available, a CDF Bayesian study is underway See talk by Gavril Giurgiu











# Updated Results including NEW DØ results (new CDF results are not yet available)






$$egin{aligned} \mathbf{C_{B_s}} &= 0.95 \pm 0.10 \ ig( &[0.78, 1.16] &\leftrightarrow 95\% ig) \ ig( &[-20 \pm 8]^\circ \cup (-68 \pm 8)^\circ \ ig( &[-38, -6]^\circ \cup [-81, -51]^\circ &\leftrightarrow 95\% ig) \end{aligned}$$

Deviation from the SM at  $3.1\sigma$ 





 $a_{\mu\mu}$  and  $B_s \to J/\Psi \phi$  point to large but different values of  $\phi_{Bs}$  (N.B. the UTA beyond the SM allows for NP in loops only, i.e. tree-level NP in  $\Gamma_{12}$  is not allowed)

Further confirmations from experiments are looked forward!

# Some information and propaganda: New UTfit website is now available at www.utfit.org

