Recent results from ISTRA+ experiment IHEP-INR-JINR Collaboration

Paris, France | 21 July - 28 July 2010 Oleg Yushchenko **Institute for High Energy Physics, Protvino**

$K \rightarrow \mu \nu \gamma$ decay. Motivation. Photon emission:

- Bremsstrahlung IB
- Structure-dependent SD± (depending) on y polarization)

And their interference terms

In total 22k events extracted

Structure-dependent term:

- Sensitive to EW structure
- Good test of ChPT
- INT± (SD± IB) depend on F, and F,

green – signal, blue – $K\mu 3$, red – $K\pi 2$

E787

Focusing on INT- region. Complementary with previous experiments

Final X-spectrum and results

Conclusion

 $K \rightarrow \mu \nu y$ decay is observed at ISTRA+ setup in a new kinematical region

The event number observed is 22K (the largest statistics in the world)

First measurement of INT- term gives $F_v-F_A=0.16\pm0.04(stat)\pm0.05(syst)$

The sign of INT- is negative

 $p \sim -25 \; {
m GeV} \; ; \; \Delta p/p \sim 1.5\% ; \; K^- \sim 3\% ; \; I \sim 3 \cdot 10^6/1.9 \; {
m sec}$

$K \rightarrow e \nu \pi^0$ decay. Motivation.

One of the best sources of information about V_{II} of CKM matrix. Strong interest to high statistics/low systematics measurements after E865 (BNL) reported 2.5σ branching increase with respect to PDG value.

Observations:

•K \rightarrow e ν π^0 is a dominant source of electrons in kaon decays. All other decays contribute much less than 1% of electrons. Electron ID is performed by ECAL

Method:

 Number of electrons is obtained from E/p in calorimeter. •No need to reconstruct π^0 Only tracks are considered •K $\rightarrow \pi^{-} \pi^{0}$ is identified by P peak

Method verification (MC)

E/P in calorimeter for charged tracks E/P=1 peak due to signal

P_{cm} for tracks assuming pion mass Peak due to $K \rightarrow \pi^- \pi^0$ decay

In both cases peak is approximated by a sum of two Gaussians and background as simple exponential (E/P) and as 4-th order polinomial (Pcm)

10³

Real data. In total, 2.2M K \rightarrow e ν π^0 events were extracted

 $Br(Ke3)/Br(K\pi2) = 0.2449 \pm$ $0.0004(stat) \pm 0.0014(syst)$ $Br(Ke3) = 5.124 \pm 0.009(stat) \pm$ $0.029(norm) \pm 0.030(syst)\%$

Recent cross-check with complete π^0 reconstruction gives: $Br(Ke3)/Br(K\pi2) = 0.2417 \pm 0.0014 \pm 0.0036$

where corrections are absorbed in:

where corrections are absorbed in:
$$S_{EW}(1+\delta_{SU2}+\delta_+^e)^2$$
 Decay phase space integral $I_{K^+}^e=\int_0^{(M_K-M_\pi)^2}dt\frac{1}{M_K^8}\lambda^{3/2}(f_+(t)/f_+(0))^2$, where $\lambda=(M_K^2-t-M_\pi^2)^2-4tM_\pi^2$

contains t-dependent form-factor and is calculated using our results from Phys.Lett. B589 (2004), 111, where the quadratic non-linearity was measured for the first time: $I_{\nu}^{e} = 0.15912 \pm 0.00084 \text{(stat)} \pm 0.00114 \text{(syst)}$

Putting everything together we get: $|V_{us}f_{\downarrow}(0)| = 0.2186 \pm 0.0009_{Br} \pm 0.0012_{th}$

Using theoretical value $f+(0) = 0.961\pm0.008$, finally we obtain: $|V_{ij}| = 0.2275 \pm 0.0009_{R} \pm 0.0022_{H}$

