

Theoretical Frameworks for Neutrino Masses

Ferruccio Feruglio
Universita' di Padova

ICHEP
July 24, 2010 - Paris

	Fogli [NoVe 2008] [0806.2649]	Schwetz et al. [0808.2016]
$\sin ^{2} \vartheta_{12}$	$0.326_{-0.04}^{+0.05} \quad[2 \sigma]$	$0.304_{-0.0016}^{+0.022}$
$\sin ^{2} \vartheta_{23}$	$0.45_{-0.09}^{+0.16} \quad[2 \sigma]$	$0.50_{-0.06}^{+0.07}$
$\sin ^{2} \vartheta_{13}$	0.016 ± 0.010	$0.01_{-0.011}^{+0.016}$
$\Delta m_{21}^{2}\left(e V^{2}\right)$	$(7.66 \pm 0.35) \times 10^{-5}[2 \sigma]$	$\left(7.65_{-0.20}^{+0.23}\right) \times 10^{-5}$
$\Delta m_{31}^{2}\left(e V^{2}\right)$	$(2.38 \pm 0.27) \times 10^{-3} \quad[2 \sigma]$	$\left(2.40_{-0.11}^{+0.12}\right) \times 10^{-3}$

$$
\begin{array}{lll}
\vartheta_{12}=\left(34.8_{-2.5}^{+3.0}\right)^{0} & {[2 \sigma]} & \vartheta_{12}=\left(33.5_{-1.0}^{+1.4}\right)^{0} \\
\vartheta_{23}=\left(42.1_{-5.3}^{+9.2}\right)^{0} & {[2 \sigma]} & \vartheta_{23}=\left(45.0_{-3.4}^{+4.0}\right)^{0}
\end{array}
$$

two opposite interpretations

Tri-Bimaximal mixing

$$
U_{T B}=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)+. .
$$

[Harrison, Perkins and Scott]

- mixing angles and mass ratios are O (1)
- there is no hierarchy to explain
- smallness of ϑ_{13} and $\Delta m^{2}{ }_{21} / \Delta m^{2}{ }_{31}$ accidental
- no special pattern behind data [Hall, Murayama, Weiner 1999]
- lepton mixing angles are special and reflect some property of the fundamental theory [this talk]
equally possible at the moment. Experimental errors are still large some features persistent in the data: all experiments favor ϑ_{23} maximal [best value of ϑ_{23} is maximal, though sizeable deviations still allowed]

Consider the indication of ϑ_{23} maximal seriously
ϑ_{23} is maximal is not an infrared stable fixed point of RGE
[ϑ_{23} maximal at low energy starting from a small high-energy value
requires either fine-tuned initial conditions or ad hoc threshold effects]
ϑ_{23} maximal cannot arise from an exact symmetry of the whole theory [if $m_{e}=m_{\mu}=0$ in the limit of exact symmetry]
we are left with
ϑ_{23} is maximal by accident
ϑ_{23} is maximal by a broken symmetry
charged lepton sector
G_{T}
$\left(m_{e}{ }^{+} m_{e}\right)$ diagonal
ϑ_{23} maximal from a misalignment between G_{T} and G_{S}

if the breaking is spontaneous, induced by $\left\langle\varphi_{T}\right\rangle,\left\langle\varphi_{S}\right\rangle, \ldots$ a special vacuum alignment is needed

Majorana neutrinos

G_{S} discrete

the most general group leaving $v^{\top} m_{v} v$ invariant, if $\vartheta_{i j}$ do not depend on m_{i}

$$
Z_{2} \times Z_{2} \times Z_{2}
$$

[go to the basis where m_{v} is diagonal: neutrinos can only change by a sign]

Example: assume $m_{e}{ }^{+} m_{e}$ diagonal and take
$\begin{aligned} & \begin{array}{l}Z_{2} \text { generated by } \\ \text { [} \mu-\tau \text { exchange] }\end{array}\end{aligned} U=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) \quad m_{v}=\left(\begin{array}{lll}x & y & y \\ y & w & z \\ y & z & w\end{array}\right) \quad \Leftrightarrow \quad \begin{aligned} & \vartheta_{13}=0 \\ & \vartheta_{23}=\frac{\pi}{4}\end{aligned}$
G_{T} can be continuous but the simplest choice is G_{f} discrete
$G_{T, 5}$ may also arise in part as accidental symmetries like B and L in the Standard Model
Example: $G_{f}=A_{4}$ generated by T and $S\left[U\right.$ accidental symmetry, $[S, U]=0$ and $\left.S^{2}=1\right]$
[Ma and Rajasekaran 2001, Ma 2002, Babu, Ma and Valle 2003, ...]

$$
\begin{array}{rlrl}
T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right) & \omega=e^{i^{2 \pi}} 3 & S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right) \\
T^{+}\left(m_{e}^{+} m_{e}\right) T & =\left(m_{e}^{+} m_{e}\right) & & \\
& \uparrow\left(m_{e}^{+} m_{e}\right) \text { diagonal } & & \longrightarrow U_{T B}{ }^{\top} m_{v} U_{T B}=\left(m_{v}\right)_{\text {diag }}
\end{array}
$$

An intriguing sequence of discrete groups

the (proper) symmetry groups of the Platonic solids

		tetrahedron	cube	octahedron	dodecahedron
duality		icosahedron			
tetrahedron	tetrahedron	A_{4}	order	n	
cube	octahedron	S_{4}	12	3	
dodecahedron	icosahedron	A_{5}	24	4	

they are all generated by two elements: S and T

$$
S^{2}=(S T)^{3}=1 \quad T^{n}=1
$$

[a longer sequence? The (infinite, discrete) modular group Γ is also generated by S and T satisfying $S^{2}=(S T)^{3}=1$ and possesses an infinite serie of finite subgroups $\Gamma / \Gamma_{n}\left(\Gamma_{n}\right.$ being the principal congruence subgroup of level n). For $n=3,4,5$ we recover the symmetry groups of the Platonic solids]
irreducible representations

A_{4}	$1,1^{\prime}, 1^{\prime \prime}, 3$
S_{4}	$1,1^{\prime}, 2,3,3^{\prime}$
A_{5}	$1,3,3^{\prime}, 4,5$

they all have 3-dimensional representations where the left-handed lepton doublets can be accommodated
models based on these groups have been constructed $U[\mu-\tau$ exchange $]$ arise as an accidental symmetry and guarantees $\vartheta_{23}=45^{\circ}$ and $\vartheta_{13}=0$ at the LO
[for a review, see: G. Altarelli and F.F arXiv:1002.0211]

$$
\begin{aligned}
& \vartheta_{13}=0 \\
& \vartheta_{23}=\frac{\pi}{4}
\end{aligned}
$$

spontaneous breaking of G_{f} down to G_{T} (charged leptons) and G_{S} (neutrinos) leads to

G_{f}	$\tan \vartheta_{12}$	ϑ_{12}	u
A_{4}	$1 / \sqrt{ }[\mathrm{TB}]$	35.26°	≈ 0.01
$\mathrm{~S}_{4}$	$1 \quad[\mathrm{BM}]$	45°	≈ 0.1
A_{5}	$1 / \phi$ [golden ratio]	31.72^{0}	≈ 0.01

these are LO predictions and corrections of order

$$
u=\frac{\langle\varphi\rangle}{\Lambda} \longrightarrow G_{f} \text { - breaking VEV }
$$

are expected. Then ϑ_{13} becomes of $O(u)$

An example based on $G_{f}=A_{4} \times Z_{3} \times U(1)_{F N}[+S U S Y+S E E-S A W]$

lepton mixing is TB, by construction, plus NLO corrections of order $0.005<u<0.05$ at the LO neutrino mass spectrum depends on two complex parameters there is a sum rule among (complex) mass eigenvalues $m_{1,2,3}$
$\frac{1}{m_{3}}=\frac{1}{m_{1}}-\frac{2}{m_{2}}$
in the NH case the sum rule completely determines the spectrum

$$
\begin{aligned}
& m_{1} \approx 0.005 \mathrm{eV} \quad m_{2} \approx 0.01 \mathrm{eV} \quad m_{3} \approx 0.05 \mathrm{eV} \\
& \left|m_{e e}\right| \approx 0.007 \mathrm{eV}
\end{aligned}
$$

in the IH case the sum rule provides a lower bound on m_{3}

$$
\begin{aligned}
& m_{3} \geq 0.017 \mathrm{eV} \\
& \left|m_{e e}\right| \geq 0.017 \mathrm{eV}
\end{aligned}
$$

NLO corrections are negligible for NH and for IH close to the lower bound

Additional tests: LFV from 1-loop SUSY particle exchange
under certain assumptions concerning the SUSY soft breaking terms

$$
\frac{B R\left(l_{i} \rightarrow l_{j} \gamma\right)}{B R\left(l_{i} \rightarrow l_{j} v_{i} \bar{v}_{j}\right)}=\frac{6 m_{W}^{4} \alpha_{e m}}{\pi m_{\text {sUSY }}^{4}}\left[\left|w_{i j}^{(1)} u^{2}\right|^{2}+\frac{m_{j}^{2}}{m_{i}^{2}}\left|w_{i j}^{(2)} u\right|^{2}\right]
$$

$W^{(1,2)}{ }_{i j}$ are known O(1) functions of SUSY parameters

$$
B R(\mu \rightarrow e \gamma) \approx B R(\tau \rightarrow \mu \gamma) \approx B R(\tau \rightarrow e \gamma) \quad \text { [up to O(1) coefficients] }
$$ independently from $u \approx \vartheta_{13}$

present (expected) sensitivity to $m_{\text {susy }}$
Assuming $w^{(1,2)}{ }_{i j}=1$

$\mathrm{BR}(\mu$->e $)<1.2 \times 10^{-11}\left(10^{-13}\right)$	
$m_{\text {susy }}>255(820) \mathrm{GeV}$	$u=0.005$
$m_{\text {susy }}>0.7(2.5) \mathrm{TeV}$	$u=0.05$

$\mathrm{BR}(\mu$->eee $)<10^{-12}\left(10^{-13}\right)$	
$m_{\text {susy }}>140(225) \mathrm{GeV}$	$u=0.005$
$m_{\text {susy }}>400(700) \mathrm{GeV}$	$u=0.05$

[F.F. and A. Paris 1005.5526]
$m_{\text {susy }}$ in the region of interest for LHC

Leptogenesis
if v_{i} transform in a 3-dim irreducible representation of G_{f} then $\epsilon_{i}=0$ in the exact symmetry limit $u=0$.

$$
\epsilon_{i}=0 \text { at the LO }
$$

$\epsilon_{i} \neq 0$ from the NLO corrections
$\varepsilon_{i} \approx \frac{u^{2}}{16 \pi} \quad[\mathrm{NH}]$
$\varepsilon_{i} \approx \frac{u^{2}}{16 \pi r} \quad[\mathrm{IH}] \quad r \equiv \frac{\Delta m_{\text {sol }}^{2}}{\Delta m_{a t m}^{2}} \approx \frac{1}{30}$
$\epsilon_{i} \geq 10^{-6}$ to produce an acceptable baryon asymmetry
$u \geq\left\{\begin{array}{lr}0.01 & {[\mathrm{NH}]} \\ 0.002 & {[\mathrm{IH}]} \\ \text { in agreement with } \\ \text { expected range of } u\end{array}\right.$

Main weak points
difficult to extend this description to the quark sector, where mixing angles seem strongly correlated to quark masses
difficult to embed into a GUT
explicit GUT models exist, but the working ones are rather complicated

Conclusions

do the data suggest a first approximation to lepton mixing angles?
if so, it is rather different from $V_{C K M} \approx 1$
lepton mixing angles look independent from neutrino masses special values, like $\vartheta_{23}=45^{\circ}$, can only be understood in terms of a broken flavour symmetry
non-abelian discrete groups like $A_{4}, S_{4}, A_{5}, \ldots$ can provide the basis for a realistic model of neutrino masses
(SUSY) models based on discrete flavour symmetries offer specific predictions for the neutrino mass spectrum, for $0 v \beta \beta$ and for LFV transitions
extension to the quark sector and embedding into GUTs possible, but difficult at the moment
back up slides

plan

1. Flavor symmetries: TB mixing and the lepton mixing puzzle 2. TB mixing from symmetry breaking of a flavor symmetry
 3. A minimal model based on A_{4}
 4. Lepton Flavour Violation
 5. Leptogenesis
 6. Conclusion

[Only an example out of many existing possibilities, to illustrate current ideas]

```
based on
AF1 = Guido Altarelli and F. F. hep-ph/0504165
AF2 = Guido Altarelli and F. F. hep-ph/0512103
AFL = Guido Altarelli,F.F. and Yin Lin hep-ph/0610165
FHLM1 = F.F., Claudia Hagedorn, Yin Lin and Luca Merlo hep-ph/0702194
AFH = Guido Altarelli, F.F. and Claudia Hagedorn hep-ph/0702194
FL = F.F. and Yin Lin hep-ph/07121528
L = Yin Lin hep-ph/08042867
```


What is the best $1^{\text {st }}$ order approximation to lepton mixing?

in the quark sector

$$
V_{C K M}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+O\left(\vartheta_{C}\right)
$$

[Wolfenstein 1983]
in the lepton sector

$$
\begin{aligned}
& U_{P M N S}=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)+\ldots \\
& U_{P M N S}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}
\end{array}\right)+\ldots
\end{aligned}
$$

agreement of ϑ_{12} suggests that only tiny corrections [$O\left(\vartheta_{\mathrm{C}}{ }^{2}\right)$] are tolerated. If all corrections are of the same order, then

$$
\vartheta_{13} \approx O\left(\vartheta_{C}{ }^{2}\right) \text { expected }
$$

can be reconciled with the data through a correction of $O\left(\vartheta_{\mathrm{C}}\right)$, for instance a rotation in the 12 sector [from the left side] $\vartheta_{13} \approx O\left(\vartheta_{\mathrm{C}}\right)$ expected
[quark-lepton complementarity ?]
$\vartheta_{23}-\pi / 4 \approx O\left(\vartheta_{C}{ }^{2}\right)$
common feature: $\vartheta_{23} \approx \pi / 4$ [maximal atm mixing]
.. or anarchical UPMNS? [Hall, Murayama, Weiner 1999]

θ_{23} maximal from some flavour symmetries?

a no-go theorem
[F. 2004]
$\vartheta_{23}=\pi / 4$ can never arise in the limit of an exact realistic symmetry
charged lepton mass matrix:

realistic symmetry:
(1) $\left|\delta m_{l}^{0}\right|<\left|m_{l}^{0}\right|$
(2) $m_{l}{ }^{0}$ has rank ≤ 1

$U_{P M N S}=U_{e}^{+} U_{v} \quad \quad$ [omitting phases]
$\tan \vartheta_{23}^{0}=\tan \vartheta_{23}^{v} \cos \vartheta_{12}^{e}+\left(\frac{\tan \vartheta_{13}^{v}}{\cos \vartheta_{23}^{v}}\right) \sin \vartheta_{12}^{e}$$\quad$ undetermined

$$
\vartheta_{23}=\frac{\pi}{4} \quad \begin{aligned}
& \text { determined entirely by breaking effects } \\
& \text { (different, in general, for } v \text { and e sectors) }
\end{aligned}
$$

Minimal choice

G_{f} generated by S and T (U can arise as an accidental symmetry) they satisfy

$$
S^{2}=T^{3}=(S T)^{3}=1
$$

these are the defining relations of A_{4}, group of even permutations of 4 objects, subgroup of $S O(3)$ leaving invariant a regular tetrahedron. S and T generate 12 elements

$$
A_{4}=\left\{1, S, T, S T, T S, T^{2}, S T^{2}, S T S, T S T, T^{2} S, T S T^{2}, T^{2} S T\right\}
$$

there are many many non-minimal possibilities: $G_{f}=S_{4}, \Delta(27), \Delta(108)$,
[Medeiros Varzielas, King and Ross 2005 and 2006; Luhn, Nasri and Ramond 2007, Blum, Hagedorn and Lindner 2007 ,...]
A_{4} has 4 irreducible representations: $1,1^{\prime}, 1^{\prime \prime}$ and 3

$$
\omega \equiv e^{i \frac{2 \pi}{3}} \begin{array}{cccc}
1 & S=1 & T=1 \\
1^{\prime} & S=1 & T=\omega^{2} \\
1^{\prime \prime} & S=1 & T=\omega
\end{array} \quad 3 \quad S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right) \quad T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right)
$$

$G_{f}=S U(3){ }_{l} \times S U(3){ }_{e^{c}} \times \ldots$

$$
\begin{gathered}
l=(\overline{3}, 1) \quad e^{c}=(1,3) \\
\varphi \equiv\left\{\begin{array}{cc}
y_{e}=(3, \overline{3}) & G_{f} \text { broken only by the } \\
Y=(6,1) & \text { Yukawa coupling of } L_{S M} \text { and } L_{5}
\end{array}\right.
\end{gathered}
$$

y_{e} and Y can be expressed in terms of lepton masses and mixing angles

$$
y_{e}=\sqrt{2} \frac{m_{e}^{d i a g}}{v} \quad Y=\frac{\Lambda_{L}}{v^{2}} U^{*} m_{v}^{d i a g} U^{+}
$$

diagonal elements $[\mathcal{M}(\langle\varphi\rangle)]_{i i}$ are of the same size as in $A_{4} \times \ldots$ similar lower bounds on the scale M

$$
\begin{aligned}
{[\mathcal{M}(\langle\varphi\rangle)]_{i j} } & =\beta\left(y_{e} Y^{+} Y\right)_{i j}+\ldots \\
& =\sqrt{2} \beta \frac{\left(m_{l}\right)_{i i}}{v} \frac{\Lambda_{L}^{2}}{v^{4}}\left[\Delta m_{\text {sol }}^{2} U_{i 2} U_{j 2}^{*} \pm \Delta m_{\text {atm }}^{2} U_{i 3} U_{j 3}^{*}\right]+\ldots
\end{aligned}
$$

a positive signal at MEG $10^{-11}<R_{\mu e}<10^{-13} \div 10^{-14}$ always be accommodated [but for a small interval around $\vartheta_{13} \approx 0.02$ where $R_{\mu e}=0$]
non-observation of $R_{i j}$ can be accommodated by lowering Λ_{L}

$$
\begin{aligned}
& \left(\frac{R_{\mu e}}{R_{\tau u}}\right) \approx\left|\frac{2}{3} r \pm \sqrt{2} \sin \vartheta_{13} e^{i \delta}\right|^{2}<1 \quad r \equiv \frac{\Delta m_{s o l}^{2}}{\Delta m_{\text {atm }}^{2}} \\
& \text { [Cirigliano, Grinstein, } \\
& \text { Isidori, Wise 2005] }
\end{aligned}
$$

MFV [scale M can be of order 1 TeV]

SUSY $\times A_{4}$ [scale M can be of order 1 TeV]
[other slides]

conclusion

- additional tests of A_{4} models from LFV generic prediction
$R_{\mu e} \approx R_{\tau \mu} \approx R_{\tau e}$ independently from ϑ_{13} (cfr MFV)
$\tau \rightarrow \mu \gamma \quad \tau \rightarrow e \gamma \quad$ below expected future sensitivity
- in the generic, non-SUSY, case

$$
R_{i j}=\frac{B R\left(l_{i} \rightarrow l_{j} \gamma\right)}{B R\left(l_{i} \rightarrow l_{j} v_{i} \bar{v}_{j}\right)} \propto\left(\frac{u}{M^{2}}\right)^{2}
$$

$$
0.001<u<0.05 \text { requires }
$$

$$
\text { M above } 10 \mathrm{TeV}
$$

$$
\text { M above } 15 \mathrm{TeV}
$$

no match with M fitting $(\mathrm{g}-2)_{\mu}$

- in the SUSY, case

$$
\begin{aligned}
R_{i j} & =\frac{B R\left(l_{i} \rightarrow l_{j} \gamma\right)}{B R\left(l_{i} \rightarrow l_{j} v_{i} \bar{v}_{j}\right)} \propto\left(\frac{u^{2}}{M^{2}}\right)^{2} \\
\tau^{-} & \rightarrow \mu^{+} e^{-} e^{-} \tau^{-} \rightarrow e^{+} \mu^{-} \mu^{-}
\end{aligned}
$$

$$
M \text { can be much smaller, in the }
$$ range of interest for $(\mathrm{g}-2)_{\mu}$

$$
B R(\mu \rightarrow e \gamma)=0.0014 \times\left(\frac{\delta a_{\mu}}{30 \times 10^{-10}}\right)^{2}\left[\gamma \vartheta_{13}\right]^{4}
$$

many models predicts a large but not necessarily maximal θ_{23}
an example: abelian flavour symmetry group $U(1)_{F}$

$$
\begin{aligned}
& F(l)=(x, 0,0) \quad[x \neq 0] \\
& F\left(e^{c}\right)=(x, x, 0)
\end{aligned}
$$

$$
m_{e}=\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & O(1) & O(1)
\end{array}\right) v_{d} \quad m_{v}=\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
\cdot & O(1) & O(1) \\
\cdot & O(1) & O(1)
\end{array}\right) \frac{v_{u}^{2}}{\Lambda}
$$

$$
\vartheta_{23} \approx O(1) \quad \text { maximal only by a fine-tuning! }
$$

similarly for all other abelian charge assignements
$F(l)=(1,-1,-1)$

$$
m_{v}=\left(\begin{array}{ccc}
\cdot & O(1) & O(1) \\
O(1) & \cdot & \cdot \\
O(1) & \cdot & \cdot
\end{array}\right) \frac{v_{u}^{2}}{\Lambda} \quad \vartheta_{23} \approx O(1)+\text { charged lepton contribution }
$$

no help from the see-saw mechanism within abelian symmetries...

θ_{23} maximal by RGE effects?

running effects important only for quasi-degenerate neutrinos
2 flavour case
boundary conditions at $\Lambda \gg$ e.w. scale

$$
m_{2}, m_{3}, \vartheta_{23}
$$

$$
\text { at } Q<\Lambda \quad \vartheta_{23}(Q) \approx \frac{\pi}{4} \Leftrightarrow \varepsilon \approx-\frac{\delta m}{m} \cos 2 \vartheta_{23} \quad \varepsilon \approx \frac{1}{16 \pi^{2}} y_{\tau}^{2} \log \frac{\Lambda}{Q}
$$

$$
\text { [possible only if } \quad \delta m \equiv m_{2}-m_{3} \ll m_{2}+m_{3} \approx 2 m \text {] }
$$

gives the scale Q at which $\theta_{23}(\mathrm{Q})$ becomes maximal

$m_{2}, m_{3}, \boldsymbol{\vartheta}_{23}$ fine tuned to obtain Q at the e.w. scale
a similar conclusion also for the 3 flavour case:
$\sin ^{2} 2 \vartheta_{12}=\frac{\sin ^{2} \vartheta_{13} \sin ^{2} 2 \vartheta_{23}}{\left(\sin ^{2} \vartheta_{23} \cos ^{2} \vartheta_{13}+\sin ^{2} \vartheta_{13}\right)^{2}}$
if $\vartheta_{23}=\frac{\pi}{4}$
wrong!
infrared stable fixed point
[Chankowski, Pokorski 2002]
$\sin ^{2} 2 \vartheta_{12}=\frac{4 \sin ^{2} \vartheta_{13}}{\left(1+\sin ^{2} \vartheta_{13}\right)^{2}}<0.2$ (Chooz)

Alignment and mass hierarchies

$$
m_{l}=\left(\begin{array}{ccc}
y_{e} & 0 & 0 \\
0 & y_{\mu} & 0 \\
0 & 0 & y_{\tau}
\end{array}\right) v_{d}\left(\frac{v_{T}}{\Lambda}\right) \quad \begin{aligned}
& \text { charged fermion masses } \\
& \text { are already diagonal }
\end{aligned}
$$

$$
m_{e} \ll m_{\mu} \ll m_{\tau} \quad \begin{aligned}
& \text { can be reproduced by } \\
& \cup(1) \text { flavour symmetry }
\end{aligned}
$$

$$
\left.\begin{array}{lll}
Q\left(e^{c}\right)=4 & Q\left(\mu^{c}\right)=2 & Q\left(\tau^{c}\right)=0 \\
Q(l)=0
\end{array}\right\} \quad \text { compatible with } \mathrm{A}_{4}
$$

$$
Q(\boldsymbol{\vartheta})=-1 \quad\langle\boldsymbol{\vartheta}\rangle \neq 0
$$

$$
y_{e} \approx \frac{\langle\boldsymbol{\vartheta}\rangle^{4}}{\Lambda^{4}} \quad y_{\mu} \approx \frac{\langle\boldsymbol{\vartheta}\rangle^{2}}{\Lambda^{2}} \quad y_{\tau} \approx 1
$$

[see also Lin hep-ph/08042867 for a realization without an additional U(1)]

Quark masses - grand unification

quarks assigned to the same A_{4} representations used for leptons?

	q	u^{c}	c^{c}	t^{c}	d^{c}	s^{c}	b^{c}
A_{4}	3	1	$1^{\prime \prime}$	1^{\prime}	1	$1^{\prime \prime}$	1^{\prime}

fermion masses from $\operatorname{dim} \geq 5$ operators, e.g. $\quad \tau^{c} \varphi_{T} l H_{d}$ good for leptons, but not for the top quark Λ naïve extension to quarks leads diagonal quark mass matrices and to $\mathrm{V}_{C K M}=1$ departure from this approximation is problematic [expansion parameter (VEV/ \wedge) too small]

possible solution within T^{\prime}, the double covering of A_{4}

[FHLM1]

$$
S^{2}=R \quad R^{2}=1 \quad(S T)^{3}=T^{3}=1
$$

24 elements

$$
\text { representations: } 11^{\prime}
$$

[older T' models by Frampton, Kephard 1994 Aranda, Carone, Lebed 1999, 2000 Carr, Frampton 2007 similar U(2) constructions by Barbieri, Dvali, Hall 1996 Barbieri, Hall, Raby, Romanino 1997 Barbieri, Hall, Romanino 1997]

- lepton sector as in the A_{4} model
- \dagger and b masses at the renormalizable level (τ mass from higher dim operators) at the leading order

$$
\begin{aligned}
& m_{t}, m_{b}>m_{c}, m_{s} \neq 0 \\
& V_{c b}
\end{aligned}
$$

- masses and mixing angles of $1^{\text {st }}$ generation from higher-order effects - despite the large number of parameters two relations are predicted

$$
\begin{array}{r}
\sqrt{\frac{m_{d}}{m_{s}}}=\left|V_{u s}\right|+O\left(\lambda^{2}\right) \\
0.213 \div 0.243 \quad 0.2257 \pm 0.0021
\end{array}
$$

$$
\frac{\sqrt{\frac{m_{d}}{m_{s}}}=\left|\frac{V_{t d}}{V_{t s}}\right|+O\left(\lambda^{2}\right)}{0.208_{-0.006}^{+0.08}}
$$

- vacuum alignment explicitly solved
- lepton sector not spoiled by the corrections coming from the quark sector
other option:
[AFH]

SUSy SU(5) in $5 \mathrm{D}=\mathrm{M}_{4} \times\left(S^{1} \times Z_{2}\right)$
flavour symmetry $A_{4} \times U(1)$

DT splitting problem solved via $S U(5)$ breaking induced by compactification
$\operatorname{dim} 5 \mathrm{~B}$-violating operators forbidden!
p-decay dominated by gauge boson exchange (dim 6)

unwanted minimal $S U(5)$ mass relation $m_{e}=m_{d}^{\top}$ avoided by assigning $T_{1,2}$ to the bulk
the construction is compatible with A_{4} !

	N	F	T_{1}	T_{2}	T_{3}	H_{5}	$H_{\overline{5}}$
$S U(5)$	1	$\overline{5}$	10	10	10	5	$\overline{5}$
A_{4}	3	3	$1^{\prime \prime}$	1^{\prime}	1	1	1^{\prime}

realistic quark mass matrices by an additional $U(1)$ acting on $T_{1,2}$
neutrino masses from see-saw compatible with both normal and inverted hierarchy
unsuppressed top Yukawa coupling $T_{3} T_{3}$
TB mixing + small corrections

A_{4} as a leftover of Poincare symmetry in D>4 [AFL]

D dimensional Poincare symmetry:
D-translations \times SO (1,D-1)
usually broken by
compactification down to 4 dimensions:
4 -translations \times SO $(1,3) \times \ldots$
a discrete subgroup of the (D-4) euclidean group $=$ translations \times rotations can survive in specific geometries

Example: $D=6$
2 dimensions compactified on T^{2} / Z_{2}

$$
\begin{aligned}
& z \rightarrow z+1 \\
& z \rightarrow z+\gamma \\
& z \rightarrow-z
\end{aligned}
$$

four fixed points

[^0]compact space is a regular tetrahedron invariant under
\[

$$
\begin{array}{lll}
S: & z \rightarrow z+\frac{1}{2} & \text { [translation] } \\
T: & z \rightarrow \gamma^{2} z & \text { [rotation by } 120^{\circ} \text {] }
\end{array}
$$
\]

[subgroup of $2 \operatorname{dim}$ Euclidean group $=2$-translations $\times S O(2)$]
the four fixed points $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ are permuted under the action of S and T

$$
\begin{array}{ll}
S: & \left(z_{1}, z_{2}, z_{3}, z_{4}\right) \rightarrow\left(z_{4}, z_{3}, z_{2}, z_{1}\right) \\
T: & \left(z_{1}, z_{2}, z_{3}, z_{4}\right) \rightarrow\left(z_{2}, z_{3}, z_{1}, z_{4}\right)
\end{array}
$$

S and T satisfy

$$
S^{2}=T^{3}=(S T)^{3}=1
$$

the compact space is invariant under a remnant of 2-translations $\times \mathrm{SO}(2)$ isomorphic to the A_{4} group

Field Theory

brane fields $\varphi_{1}(x), \varphi_{2}(x), \varphi_{3}(x), \varphi_{4}(x)$ transform as $3+$ (a singlet) under A_{4}

The previous model can be reproduced by choosing $I, e^{c}, \mu^{c}, \tau^{c}, H_{u, d}$ as brane fields and φ_{T}, φ_{S} and ξ as bulk fields.

String Theory [heterotic string compactified on orbifolds]

in string theory the discrete flavour symmetry is in general bigger than the isometry of the compact space. [Kobayashi, Nilles, Ploger, Raby, Ratz 2006]
orbifolds are defined by the identification

$$
(\vartheta x) \approx x+l \quad\left\{\begin{array}{ccc}
l=n_{a} e_{a} & \begin{array}{l}
\text { translation } \\
\text { in a lattice }
\end{array} & \text { group generated by }(\vartheta, l) \\
\vartheta & \text { twist } & \text { is called space group }
\end{array}\right.
$$

fixed points: special points X_{F} satisfying

$$
x_{F} \equiv\left(\vartheta_{F}^{K} x_{F}\right)+l_{F} \quad \text { for some } \quad\left(\vartheta_{F}^{K}, l_{F}\right)
$$

twisted states living at the fixed point $x_{F}=\left(\vartheta_{F}{ }_{F}, l_{F}\right)$ have couplings satisfying space group selection rules [SGSR]. Non-vanishing couplings allowed for

$$
\prod_{F}\left(\vartheta_{F}^{K}, l_{F}\right) \equiv(1,0)
$$

G_{f} is the group generated by the orbifold isometry and the SGSR

Example: S^{1} / Z_{2}

$$
1
$$

Isometry group $=S_{2}$ generated by σ^{1} in the basis $\{|1>| 2>$,

SGSR $=Z_{2} \times Z_{2}$ generated by $\left(\sigma^{3},-1\right)$
[allowed couplings when number n_{1} of twisted states at |1> and the number n_{2} of twisted states at |2> are even]

$G_{f}=$ semidirect product of S_{2} and $\left(Z_{2} \times Z_{2}\right) \equiv D_{4}$

group leaving invariant a square

relation between A_{4} and the modular group

modular group PSL(2,Z): linear fractional transformation
discrete, infinite group generated by two elements

$$
\underbrace{z \rightarrow-\frac{1}{z}}_{S}
$$

$$
\underbrace{z \rightarrow z+1}_{T}
$$

$$
\begin{aligned}
& \text { obeying } \\
& S^{2}=(S T)^{3}=1
\end{aligned}
$$

the modular group is present everywhere in string theory
[any relation to string theory approaches to fermion masses?]
A_{4} is a finite subgroup of the modular group and
$A_{4}=\frac{\operatorname{PSL}(2, Z)}{H}$

representations of A_{4} are representations of PSL $(2, Z)$

Ibanez; Hamidi, Vafa;
Dixon, Friedan, Martinec,
Shenker; Casas, Munoz;
Cremades, Ibanez,
Marchesano; Abel, Owen
infinite discrete normal subgroup of $\operatorname{PSL}(2, Z)$

future improvements on atmospheric and reactor angles

$\sin ^{2} \theta$
 23

$\delta\left(\sin ^{2} \theta_{23}\right)$ reduced by future LBL experiments from $v_{\mu} \rightarrow v_{\mu}$ disappearance channel

$$
\begin{gathered}
\vartheta_{23} \approx \frac{\pi}{4} \\
\square
\end{gathered}
$$

$$
P_{\mu \mu} \approx 1-\sin ^{2} 2 \vartheta_{23} \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right)
$$

$$
\delta \vartheta_{23} \approx \frac{\sqrt{\delta P_{\mu \mu}}}{2}
$$

i.e. a small uncertainty on $\mathrm{P}_{\mu \mu}$ leads to a large uncertainty on θ_{23}

- no substantial improvements from conventional beams
- superbeams (e.g. T2K in 5 yr of run)

$$
\begin{aligned}
& \delta P_{\mu \mu} \approx 0.01 \\
& \delta \vartheta_{23} \approx 0.05 \mathrm{rad} \leftrightarrow 2.9^{0}
\end{aligned}
$$

improvement by about a factor 2

T2K-1

 90\% CL black = normal hierarchy red = inverted hierarchy true value 41° [courtesy by Enrique Fernandez]
maximal mixing from renormalization group running?

θ_{23} maximal by RGE effects?

running effects important only for quasi-degenerate neutrinos
2 flavour case
boundary conditions at $\Lambda \gg$ e.w. scale

$$
m_{2}, m_{3}, \vartheta_{23}
$$

$$
\text { at } Q<\Lambda \quad \vartheta_{23}(Q) \approx \frac{\pi}{4} \Leftrightarrow \varepsilon \approx-\frac{\delta m}{m} \cos 2 \vartheta_{23} \quad \varepsilon \approx \frac{1}{16 \pi^{2}} y_{\tau}^{2} \log \frac{\Lambda}{Q}
$$

$$
\text { [possible only if } \quad \delta m \equiv m_{2}-m_{3} \ll m_{2}+m_{3} \approx 2 m \text {] }
$$

gives the scale Q at which $\theta_{23}(\mathrm{Q})$ becomes maximal

$m_{2}, m_{3}, \boldsymbol{\vartheta}_{23}$ fine tuned to obtain Q at the e.w. scale
a similar conclusion also for the 3 flavour case:
$\sin ^{2} 2 \vartheta_{12}=\frac{\sin ^{2} \vartheta_{13} \sin ^{2} 2 \vartheta_{23}}{\left(\sin ^{2} \vartheta_{23} \cos ^{2} \vartheta_{13}+\sin ^{2} \vartheta_{13}\right)^{2}}$
if $\vartheta_{23}=\frac{\pi}{4}$
wrong!
infrared stable fixed point
[Chankowski, Pokorski 2002]
$\sin ^{2} 2 \vartheta_{12}=\frac{4 \sin ^{2} \vartheta_{13}}{\left(1+\sin ^{2} \vartheta_{13}\right)^{2}}<0.2$ (Chooz)
vacuum alignment from minimization of the scalar potential

(1) natural vacuum alignment

$$
\begin{array}{ccc}
\left\langle\varphi_{T}\right\rangle & = & \left(v_{T}, 0,0\right) \\
\left\langle\varphi_{S}\right\rangle & = & \left(v_{S}, v_{S}, v_{S}\right) \\
\langle\xi\rangle & = & u
\end{array}
$$

it is not a local minimum of the most general renormalizable scalar potential V depending on $\varphi_{S}, \varphi_{T}, \xi$ and invariant under A_{4}
$v_{T} \approx v_{S} \approx u$
a simple solution in 1 extra dimension $\equiv E D$

[Altarelli, F. 0504165] $\left\langle\varphi_{T}\right\rangle=\left(v_{T}, 0,0\right)$ local minimum of V_{0}	$l, h_{u, d}, \mu^{c}, \tau^{c}$	$\left\langle\varphi_{S}\right\rangle=\left(v_{S}, v_{S}, v_{S}\right)$ $\langle\xi\rangle=u$
local minimum of V_{L}		

v masses arise from
local operators at $\mathrm{y}=\mathrm{L}$$\quad \frac{\left(\varphi_{S} l l\right) h_{u} h_{u}}{\Lambda^{2}} \quad \frac{\xi(l l) h_{u} h_{u}}{\Lambda^{2}}$
this explains also the absence of the terms with $\varphi_{S} \leftrightarrow \varphi_{T}$
charged lepton masses from

$$
\frac{\left(f^{c} \varphi_{T} F\right) \delta(y)}{\sqrt{\Lambda}}
$$

$\left.\xrightarrow{\substack{\text { bulk fermion Y }=-1}} \begin{array}{c}\text { non-local operators } \\ \frac{\left(F^{c} l\right) h_{d}}{\sqrt{\Lambda}} \delta(y-L)\end{array}\right\} E \ll M$

$$
\frac{\left(f^{c} \varphi_{T} l\right) h_{d}}{\Lambda} e^{-M L}
$$

a 4D supersymmetric solution \equiv SUSY [Altarelli,F. hep-ph/0512103]

L is identified with the superpotential $\mathrm{w}_{\text {lepton }}$ in the lepton sector
$\mathrm{w}_{\text {lepton }}$ is invariant under $\quad A_{4} \times Z_{3} \times U(1)_{R}$

	l	e^{c}	μ^{c}	$\boldsymbol{\tau}^{c}$	$h_{u, d}$	φ_{T}	φ_{S}	ξ	ξ	φ_{0}^{T}	φ_{0}^{S}	ξ_{0}
A_{4}	3	1	$1^{\prime \prime}$	1^{\prime}	1	3	3	1	1	3	3	1
Z_{3}	ω	ω^{2}	ω^{2}	ω^{2}	1	1	ω	ω	ω	1	ω	ω
$U(1)_{R}$	1	1	1	1	0	0	0	0	0	2	2	2
matter fields												

absence of $\quad \varphi_{S} \leftrightarrow \varphi_{T} \quad x(l l)$ automatic

$$
w=w_{\text {lepton }}+w_{d}+\ldots \quad w_{d}=M\left(\varphi_{0}^{T} \varphi_{T}\right)+g\left(\varphi_{0}^{T} \varphi_{T} \varphi_{T}\right)+g_{1}\left(\varphi_{0}^{S} \varphi_{S} \varphi_{S}\right)+g_{2} \widetilde{\xi}\left(\varphi_{0}^{S} \varphi_{S}\right)+
$$

$$
\begin{aligned}
w_{d}= & M\left(\varphi_{0}^{T} \varphi_{T}\right)+g\left(\varphi_{0}^{T} \varphi_{T} \varphi_{T}\right)+g_{1}\left(\varphi_{0}^{S} \varphi_{S} \varphi_{S}\right)+g_{2} \tilde{\xi}\left(\varphi_{0}^{S} \varphi_{S}\right)+ \\
& g_{3} \xi_{0}\left(\varphi_{S} \varphi_{S}\right)+g_{4} \xi_{0} \xi^{2}+g_{5} \xi_{0} \xi \tilde{\xi}+g_{6} \xi_{0} \xi^{2}
\end{aligned}
$$

minimum of the
scalar potential at:

$$
\left\langle\varphi_{T}\right\rangle=\left(v_{T}, 0,0\right)
$$

$$
\left\langle\varphi_{S}\right\rangle=\left(v_{S}, v_{S}, v_{S}\right)
$$

$$
\langle\xi\rangle=u
$$

$$
\langle\tilde{\xi}\rangle=
$$

0
$v_{S}^{2}=-\frac{g_{4}}{3 g_{3}} u^{2}$
u undetermined

[^0]: if $\gamma=\mathrm{e}^{\mathrm{i} \frac{\pi}{3}}$

