The Ohio State University's Center for Cosmology and AstroParticle Physics

Neutrinos from Supernovae

International Conference in High Energy Physics ICHEP 2010, 22-28 July 2010, Paris, France

CAPP

Menu du jour

Neutrino Production in Supernovae

SN Explosion and Neutrino Emission

SN Explosion and Neutrino Emission

Neutrino Luminosities and Energies

Neutrino Propagation and Flavor Conversions

Free-Streaming Neutrinos

Nonlinear nu-nu effects are important when nu-nu interaction energy exceeds the typical vacuum oscillation frequency

These interactions give rise to "Collective" flavor conversions

Talk by Antonio Marrone, ICHEP-2010

Status Report at ICHEP 2008

Part B

Flavor Conversion

Spectral Split (stepwise spectral swapping): numerical simulation:

Basudeb Dasgupta, ICHEP-2010 at Paris, France, 22 - 28 July 2010

30

Spectral Swaps: Accretion Phase

Nontrivial Evolution only for Inverted Hierarchy

Fogli, Lisi, Marrone and Mirizzi, arXiv: 0707.1998

Collective Flavor Conversion

Instability in Flavor Space \rightarrow Swap around spectral crossings

Spectral Swaps: Cooling Phase

3 Flavor Spectral Swaps: Cooling Phase

Late-time + Angle-dependent + 3 flavors

Survey of Flux Models

MSW conversions in SN

Regeneration in Earth Matter

Electron flavor flux = $\cos^2 \theta_{12} v_1 + \sin^2 \theta_{12} v_2$

HE 5.1-4

MSW REGENERATION OF SOLAR AND SUPERNOUA V IN THE EARTH

M. Cribier⁽¹⁾, W. Hampel⁽²⁾, P.O. Lagage⁽¹⁾, J. Rich⁽¹⁾, M. Spiro⁽¹⁾, D. Vignaud⁽¹⁾
 ⁽¹⁾ CEN Saclay F; ⁽²⁾ Max Planck Institut fur Kernphysik, Heidelberg, FRG

Abstract

We discuss the MSW (Mikheyev-Smirnov-Wolfenstein) effect for different radiochemical and real-time neutrino experiments taking into account the effects of the passage through the earth for solar and supernova neutrinos. We emphasize that v_e regeneration in the earth can lead to measurable increases in counting rates and to a time dependent v_e energy spectrum. Such observations would verify the presence of the MSW effect and lead to a restriction on the allowed values of neutrino mass differences and mixing angles.

Detector Location Matters!

Electron flavor: = $(1-P_{2e}) v_1 + P_{2e} v_2$ P_{2e} is the probability of v_2 to v_e which depends on Earth density and L

Survival Probabilities

Table 1: Survival probability of ν_e and $\bar{\nu}_e$ in different phases of a SN explosion and neutrino mass and mixing scenarios. The caveats [a] or [b] refer to cases of low $\langle E_{\nu_x} \rangle$ (< 18 MeV) or only weakly broken equipartition $(L_{\nu_x}/L_{\nu_e} \approx 1.0 - 1.3)$ respectively, in which case p_{ν_e} and p_{ν_e} are the same as that at $E \leq E_{low}$; the $\bar{\nu}_e \leftrightarrow \bar{\nu}_y$ and $e \leftrightarrow x$ swaps fail to take place in an efficient way for those cases respectively. See the text for more details.

		Burst	Accretion		Cooling	
			$(L_{\nu_x} \lesssim L_{\nu_e})$		$(L_{\nu_x} \gtrsim L_{\nu_e})$	
Mass and Mixing	Energy	$p_{ u_e}$	$p_{ u_e}$	$p_{ar{ u}_e}$	p_{ν_e}	$p_{ar{ u}_e}$
$\Delta m_{\rm atm}^2 > 0$ with	$E \lesssim E_{high}$	0	0	$\cos^2\theta_{12}$	0	$\cos^2 \theta_{12}$
$\sin^2 \theta_{13} > 10^{-3}$	$E \gtrsim E_{high}$				$\sin^2 \theta_{12}$	0
$\Delta m_{\rm atm}^2 > 0$ with	$E \lesssim E_{high}$	$\sin^2\theta_{12}$	$\sin^2 \theta_{12}$	$\cos^2\theta_{12}$	$\sin^2 \theta_{12}$	$\cos^2 \theta_{12}$
$\sin^2 \theta_{13} < 10^{-5}$	$E\gtrsim E_{high}$				0	0
$\begin{array}{l} \Delta m^2_{\rm atm} < 0 \mbox{ with} \\ \sin^2 \theta_{13} > 10^{-3} \end{array}$	$E \lesssim E_{low}$	$\sin^2 \theta_{12}$	$\sin^2 \theta_{12}$	0	$\sin^2 \theta_{12}$	0
	$E_{low} \lesssim E \lesssim E_{high}$		0	$\cos^2\theta_{12}$	0	$\cos^2 \theta_{12} \ [a]$
	$E\gtrsim E_{high}$				$\cos^2 \theta_{12} \ [b]$	$\sin^2 \theta_{12} [b]$
$\begin{array}{c c} \Delta m^2_{\rm atm} < 0 \text{ with} \\ \sin^2 \theta_{13} < 10^{-5} \end{array}$	$E \lesssim E_{low}$	$\sin^2 \theta_{12}$	$\sin^2 \theta_{12}$	$\cos^2 \theta_{12}$	$\sin^2 \theta_{12}$	$\cos^2 \theta_{12}$
	$E_{low} \lesssim E \lesssim E_{high}$		0	0	0	0 [a]
	$E \gtrsim E_{high}$				$\cos^2 \theta_{12} [b]$	$\sin^2 \theta_{12} [b]$

Note: When survival probability is not zero, one we can get Earth effects. Also, if the survival probabilities differ for large and small θ_{13} , shock effects are seen for corresponding large mixing scenario.

B. Dasgupta, arXiv:hep-ph/1005.2681 [Moriond-2010, Proceedings]

Neutrino Detection

Running (soon) SN Neutrino Detectors

Main Detection Channels

• SK-like water Cherenkov detector (30 kt, SN at 10kpc)

$$ar{
u}_e p
ightarrow ne^+$$
: $pprox$ 7000 - 12000*
 $u e^-
ightarrow
u e^-$: $pprox$ 200 - 300*
 $u_e + {}^{16} O
ightarrow X + e^-$: $pprox$ 150-800*

Scintillation detector

 $ar{
u}_{
m e} p
ightarrow n e^+
u + {}^{12} {
m C}
ightarrow
u + X + \gamma ext{ (15.11 MeV)}$

Liquid Argon detector

$$u_{
m e}+~^{40}{
m Ar}
ightarrow~^{40}{
m K}^*+{
m e}^-$$

Super-Kamiokande and Icecube are at present our largest detectors for SN neutrinos.

Liquid Argon TPC can see neutrinos, others mostly see antineutrinos

Gadzooks

What Can We Learn ? - Astrophysics -

SN pointing alerts/SNEWS

Neutrinos reach ~24 hours before the light from SN explosion

SN at 10 kpc may be detected within a cone of ~ 5 at SK, factor of 3 better with Gd, and factor of 10 better with a 30xSK

Beacom and Vogel, arXiv: astro-ph/9811350 Tomas, Semikoz, Kachelriess, Raffelt and Dighe, arXiv: hep-ph/0307050

This may be crucial for dust-obscured supernovae!

Coincidence at multiple detectors will trigger an alert for astronomers

SNEWS http://snews.bnl.gov

 $ve \rightarrow ve$

 $\overline{\mathbf{v}}_{\mathbf{p}} \mathbf{p} \rightarrow \mathbf{n} \mathbf{e}$

Stellar Explosion Dynamics

Diffuse Neutrino Background

Estimated present-day v_e flux from all SN in our past~ 10 cm⁻² s⁻¹

Guaranteed source of neutrinos from cosmological distances

Coincidence with Gravity Wave Expts

SN neutrino-curve is an excellent probe of the bounce time. This can be used to great advantage for coincidence measurement with gravitational wave detectors

Pagliaroni, Vissani, Coccia and Fulgione, arXiv:0903:1191 (PRL) Halzen and Raffelt, arXiv:0908.2317

What Can We Learn ? - Particle Physics -

Can we see the splits? Perhaps...for Cooling.

Choubey, Dasgupta, Dighe and Mirizzi, arXiv:1008.xxxx

Accretion phase signals...a bit weaker.

Choubey, Dasgupta, Dighe and Mirizzi, arXiv:1008.xxxx

Earth Matter Effects

Neutrino Mass Hierarchy

Ratio of events at two 0.4 MT WC detectors, one shadowed and other not. SN taken at 10 kpc.

Dasgupta, Dighe and Mirizzi, arXiv: arXiv:0802.1481 (PRL)

Θ_{13} Estimate/Shockwave effects

Tomas, Kachelriess, Dighe, Raffelt and Janka,

arXiv:astro-ph/0407132

Most of the work on this was done around 2000-2004 After including collective effects ...

e.g. Gava, Kneller, Volpe and Mc Laughlin, arXiv:0902.0317 (PRL)

QCD anti-nu burst detectable from SN

Sagert, Fischer, Hempel, Pagliara, Schaffner-Bielich, Mezzacappa, Thielemann, and Liebendoerfer, arXiv:0809.4225 (PRL)

Dasgupta, Fischer, Horiuchi, Liebendorfer, Mirizzi, Sagert and Schaffner-Bielich

arXiv:0912.2568

Summary

3.

4.

- 3. Tracking the local SN rate
- 4. Timing/GW-coincidence

5.

Basudeb Dasgupta, ICHEP-2010 at Paris, France, 22 - 28 July 2010

QCD phase transition

Back-up Slide 1: R-process nucleosynthesis

Demanding successful R-process nucleosynthesis puts non-trivial constraints on possible SN fluxes.

Chakraborty, Choubey, Goswami and Kar, arXiv: arXiv:0911.1218

Back-up Slide 2: Non-Standard effects

Non-Standard Interactions can give rise to a rich set of possibilities, and make things more complicated.

