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A tale of many scales

✦ Collider processes characterized by many 
scales:  s, sij, Mi, ΛQCD, ...

✦ Large Sudakov logarithms arise, which 
need to be resummed (e.g. parton showers, 
mass effects, aspects of underlying event)

✦ Effective field theories provide modern, 
elegant approach to this problem based on 
scale separation (factorization theorems) 
and RG evolution (resummation)



Soft-collinear factorization

✦ Factorize cross section:

✦ Define components in 
terms of field theory 
objects in SCET

✦ Resum large Sudakov 
logarithms directly in 
momentum space using 
RG equations 

H

J J

J J

S

dσ ∼ H({sij}, µ)
�

i

Ji(M2
i , µ)⊗ S({Λ2

ij}, µ)

Sen 1983; Kidonakis, Oderda, Sterman 1998



Soft-collinear effective theory (SCET)

✦ Two-step matching procedure: 

✦ Integrate out hard modes,                              
describe collinear and soft                          
modes by fields in SCET

✦ Integrate out collinear modes                           
(if perturbative) and match                          
onto a theory of Wilson lines

SCET soft Wilson 
linesSM

integrate out 
hard fields

integrate out 
collinear fields

hard

collinear

soft

sij

M2
i

Λ2
ij =

M4
i

sij

Bauer, Pirjol, Stewart et al. 2001 & 2002; Beneke et al. 2002; ...



Anomalous dimension to two loops

✦ General result for arbitrary processes:

✦ Generalizes structure found for massless case
✦ Novel three-parton terms appear at two loops

with TF = 1
2 . Here mi denote the masses of the heavy quarks. Note that, as an alternative

to (2), one can convert the expression for the Z factor from the effective to the full theory by
replacing αs → ξ−1 αQCD

s . We will make use of this possibility in Section 4 to predict the IR
poles of the qq̄ → tt̄ and gg → tt̄ amplitudes in full QCD.

The relation

Z−1(ε, {p}, {m}, µ)
d

d lnµ
Z(ε, {p}, {m}, µ) = −Γ({p}, {m}, µ) (4)

links the renormalization factor to a universal anomalous-dimension matrix Γ, which governs
the scale dependence of effective-theory operators built out of collinear SCET fields for the
massless partons and heavy-quark effective theory (HQET [32]) fields for the massive ones. For
the case of massless partons, the anomalous dimension has been calculated at two-loop order
in [7, 8] and was found to contain only two-parton color-dipole correlations. It has recently
been conjectured that this result may hold to all orders of perturbation theory [10, 14, 16]. On
the other hand, when massive partons are involved in the scattering process, then starting at
two-loop order correlations involving more than two partons appear [25], the reason being that
constraints from soft-collinear factorization and two-parton collinear limits, which protect the
anomalous dimension in the massless case, no longer apply [26].

At two-loop order, the general structure of the anomalous-dimension matrix is [26]

Γ({p}, {m}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij

+
∑

i

γi(αs)

−
∑

(I,J)

TI · TJ

2
γcusp(βIJ , αs) +

∑

I

γI(αs) +
∑

I,j

TI · Tj γcusp(αs) ln
mIµ

−sIj

+
∑

(I,J,K)

ifabc T a
I T b

J T c
K F1(βIJ , βJK , βKI) (5)

+
∑

(I,J)

∑

k

ifabc T a
I T b

J T c
k f2

(

βIJ , ln
−σJk vJ · pk

−σIk vI · pk

)

+ O(α3
s) .

The one- and two-parton terms depicted in the first two lines start at one-loop order, while
the three-parton terms in the last two lines start at O(α2

s). Starting at three-loop order also
four-parton correlations would appear. The notation (i, j, . . . ) etc. refers to unordered tuples
of distinct parton indices. We have defined the cusp angles βIJ via

cosh βIJ =
−sIJ

2mImJ

= −σIJ vI · vJ − i0 = wIJ . (6)

They are the hyperbolic angles formed by the time-like Wilson lines of two heavy partons.
The physically allowed values for wIJ are wIJ ≥ 1 (one parton incoming and one outgoing),
corresponding to βIJ ≥ 0, or wIJ ≤ −1 (both partons incoming or outgoing), corresponding
to βIJ = −b + iπ with real b ≥ 0.1 The first possibility corresponds to space-like kinematics,

1This choice implies that sinhβ =
√

w2 − 1. Alternatively, we could have used βIJ = b − iπ with b ≥ 0, in
which case sinhβ = w

√
1 − w−2. We have confirmed that our results are the same in both cases.

4

with TF = 1
2 . Here mi denote the masses of the heavy quarks. Note that, as an alternative

to (2), one can convert the expression for the Z factor from the effective to the full theory by
replacing αs → ξ−1 αQCD

s . We will make use of this possibility in Section 4 to predict the IR
poles of the qq̄ → tt̄ and gg → tt̄ amplitudes in full QCD.

The relation

Z−1(ε, {p}, {m}, µ)
d

d lnµ
Z(ε, {p}, {m}, µ) = −Γ({p}, {m}, µ) (4)

links the renormalization factor to a universal anomalous-dimension matrix Γ, which governs
the scale dependence of effective-theory operators built out of collinear SCET fields for the
massless partons and heavy-quark effective theory (HQET [32]) fields for the massive ones. For
the case of massless partons, the anomalous dimension has been calculated at two-loop order
in [7, 8] and was found to contain only two-parton color-dipole correlations. It has recently
been conjectured that this result may hold to all orders of perturbation theory [10, 14, 16]. On
the other hand, when massive partons are involved in the scattering process, then starting at
two-loop order correlations involving more than two partons appear [25], the reason being that
constraints from soft-collinear factorization and two-parton collinear limits, which protect the
anomalous dimension in the massless case, no longer apply [26].

At two-loop order, the general structure of the anomalous-dimension matrix is [26]

Γ({p}, {m}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij

+
∑

i

γi(αs)

−
∑

(I,J)

TI · TJ

2
γcusp(βIJ , αs) +

∑

I

γI(αs) +
∑

I,j

TI · Tj γcusp(αs) ln
mIµ

−sIj

+
∑

(I,J,K)

ifabc T a
I T b

J T c
K F1(βIJ , βJK , βKI) (5)

+
∑

(I,J)

∑

k

ifabc T a
I T b

J T c
k f2

(

βIJ , ln
−σJk vJ · pk

−σIk vI · pk

)

+ O(α3
s) .

The one- and two-parton terms depicted in the first two lines start at one-loop order, while
the three-parton terms in the last two lines start at O(α2

s). Starting at three-loop order also
four-parton correlations would appear. The notation (i, j, . . . ) etc. refers to unordered tuples
of distinct parton indices. We have defined the cusp angles βIJ via

cosh βIJ =
−sIJ

2mImJ

= −σIJ vI · vJ − i0 = wIJ . (6)

They are the hyperbolic angles formed by the time-like Wilson lines of two heavy partons.
The physically allowed values for wIJ are wIJ ≥ 1 (one parton incoming and one outgoing),
corresponding to βIJ ≥ 0, or wIJ ≤ −1 (both partons incoming or outgoing), corresponding
to βIJ = −b + iπ with real b ≥ 0.1 The first possibility corresponds to space-like kinematics,

1This choice implies that sinhβ =
√

w2 − 1. Alternatively, we could have used βIJ = b − iπ with b ≥ 0, in
which case sinhβ = w

√
1 − w−2. We have confirmed that our results are the same in both cases.

4

new!

massless partons

massive partons

Mitov, Sterman, Sung 2009; Becher, MN 2009
Ferroglia, MN, Pecjak, Yang 2009 

Becher, MN 2009 (see also: Gardi, Magnea 2009)



EFT-based predictions for Higgs production 
at Tevatron and LHC

Ahrens, Becher, MN, Yang 2008 & update for ICHEP 2010



Large higher-order corrections

✦ Corrections are large:        
70% at NLO + 30% at NNLO 
[130% and 80% if PDFs and 
αs  are held fixed] 

✦ Only Cgg contains leading 
singular terms, which give 
90% of NLO and 94% of 
NNLO correction

✦ Contributions of Cqg and Cqq 

are small: -1% and -8% of the 
NLO  correction

3

with

S(−µ2, µ2) = −

αs(µ2)
∫

αs(−µ2)

dα
ΓA

cusp(α)

β(α)

α
∫

αs(−µ2)

dα′

β(α′)
,

aΓ(−µ2, µ2) = −

αs(µ2)
∫

αs(−µ2)

dα
ΓA

cusp(α)

β(α)
,

(19)

and similarly for the function aγS . The perturba-
tive expansions of these functions obtained at NNLO in
renormalization-group improved perturbation theory can
be found in [20]. They can be simplified using relation
(16). To leading order we find

lnU(m2
H , µ2) =

ΓA
0

2β2
0

{

4π

αs(m2
H)

[

2a arctan(a) − ln(1 + a2)
]

+

(

ΓA
1

ΓA
0

−
β1

β0
−

γS
0 β0

ΓA
0

)

ln(1 + a2) (20)

+
β1

4β0

[

4 arctan2(a) − ln2(1 + a2)
]

+ O(αs)

}

,

where a ≡ a(m2
H). Note that the result is µ-independent at

this order. The relevant anomalous-dimension coefficients
are ΓA

0 = 4CA, γS
0 = 0, and

ΓA
1

ΓA
0

=

(

67

9
−

π2

3

)

CA −
20

9
TF nf , (21)

where CA = Nc, TF = 1/2, and nf = 5 is the number
of light quark flavors. The coefficients of the β-function
follow from (14).

The expression for the evolution function simplifies con-
siderably if we treat a(m2

H) ≈ 0.2 as a parameter of order
αs. Inserting the values of the one-loop anomalous dimen-
sions from above, we then find

lnU(m2
H , µ2) =

CAπαs(m2
H)

2

[

1 +
ΓA

1

ΓA
0

αs(m2
H)

4π
+ O(α2

s)

]

.

(22)
This result makes explicit that the “π2-enhanced” correc-
tions are terms of the form (CAπαs)n in perturbation the-
ory and exponentiate at leading order. The simplest way
to implement our resummation in existing codes for Higgs-
boson production would be to multiply the fixed-order re-
sult with exp[CAπαs(m2

H)/2] and subtract the expanded
form of this factor from the perturbative series. This treat-
ment is sufficient for practical purposes.

Numerically, setting µ = mH = 120GeV we obtain
lnU = {0.563, 0.565, 0.565} at LO, NLO, and NNLO from
the exact expression for the evolution function derived from
(18), indicating that the leading-order terms give by far
the dominant effect after renormalization-group improve-
ment. The analytical expressions (20) and (22) provide
accurate approximations to the exact results. The first
equation gives lnU = 0.562, while the second one yields
lnU = 0.567. The close agreement of these two numbers
shows that the running of coupling constant between µ2
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FIG. 1: LO (light), NLO (medium), and NNLO (dark) pre-
dictions for the Higgs-production cross section at the LHC in
fixed-order perturbation theory (left) and after resummation of
the π

2-enhanced terms (right).

and −µ2 is a minor effect compared with the evolution
driven by the anomalous dimension of the effective two-
gluon operator in (2).

We are now in a position to discuss our improved results
for the hard function in the formula for the Higgs-boson
production cross section. Setting µ = mH = 120GeV, we
obtain

H(m2
H , m2

H) = {1.756 (LO), 1.907 (NLO), 1.906 (NNLO)} .
(23)

This should be compared with the poorly converging series
H = {1, 1.623, 1.844} obtained using fixed-order perturba-
tion theory. Figure 1 illustrates the impact of the resumma-
tion of the π2-enhanced terms on the cross-section predic-
tions for Higgs-boson production at the LHC. The bands in
each plot show results obtained at LO, NLO, and NNLO
using MRST2004 parton distributions [21]. Their width
reflects the scale variation obtained by varying the factor-
ization and renormalization scales between mH/2 and 2mH

(setting µr = µf ). The convergence of the expansion and
the residual scale dependence at NLO and NNLO are much
improved by the resummation. The new LO and NLO
bands almost coincide with the NLO and NNLO bands in
fixed-order perturbation theory, and the new NNLO band
is now fully contained inside the NLO band.

IV. DRELL-YAN PRODUCTION

The cross section for the Drell-Yan process receives the
same type of π2-enhanced corrections as the Higgs-boson
production cross section, however in this case no anoma-
lously large K-factors arise at NLO and NNLO. Let us
briefly discuss why this is the case.

The vector-current matching coefficient CV appearing in
the Drell-Yan case is defined in analogy with CS in (2), but
with the two-gluon operator replaced by the electromag-
netic current q̄γµq [9, 10, 11]. It obeys an evolution equa-
tion of the same structure as (6), in which the cusp anoma-
lous dimension in the adjoint representation is replaced by

MRST’04 PDFs

Harlander, Kilgore 2002; Anastasiou, Melnikov 2002 
Ravindran, Smith, van Neerven 2003

LO

NNLO

NLO

LHC (√s=14 TeV)



Effective theory analysis
✦ Separate contributions associated with different 

scales, turning a multi-scale problems into a series 
of single-scale problems

✦ Evaluate each contribution at its natural scale, 
leading to improved perturbative behavior

✦ Use renormalization group to evolve contributions 
to a common factorization scale, thereby 
exponentiating (resumming) large corrections

When this is done consistently, large K-factors 
should not arise, since no large perturbative 

corrections are left unexponentiated!



Cross section predictions
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Figure 6: The fixed-order (left) and RG-improved (right) cross-section predictions including
perturbative uncertainty bands due to scale variations for the Tevatron (upper) and LHC
(lower plots). In contrast to Figure 5, different PDF sets are used according to the order of
the calculation.

after RG improvement are fully contained in the lower-order ones and the K-factor is close
to 1, in particular for the LHC.1 In fixed-order calculations it is customary to use PDFs ex-
tracted from a fit using predictions of the same order. Doing so absorbs universal higher-order
corrections into the PDFs. Since resummed calculations contain contributions of arbitrarily
high orders, the optimal PDF choice is less clear. If the same large higher-order corrections
affect both the observable one tries to predict and the cross sections used to extract the PDFs,
it would be quite problematic to perform a resummation in one case and not the other. For
our case, the relevant input quantity is the gluon PDF at low x, which is mostly determined
by measurements of scaling violations in the DIS structure function, ∂F2(x, Q2)/∂Q2. The
higher-order corrections associated with the analytic continuation of the time-like gluon form
factor, which we resum, do not affect the DIS cross section, and so are not universal and

1For MRST2004 PDFs [52], the K-factors after resummation are somewhat larger, K ≈ 1.3 for the LHC,
see [18].

18

8.4% increase over 
fixed order NNLO

13% increase over 
fixed order NNLO



Update for ICHEP 2010

✦ Consider lower LHC energies (√s=7, 10 TeV)
✦ Include electroweak radiative corrections, 

some of which were obtained after our paper

✦ Include (as before) QCD corrections with 
NNNLL resummation (also large kinematical 
corrections specific for time-like processes) 
matched onto NNLO fixed-order results

Actis, Passarino, Sturm, Uccirati 2008 & 2009 
Anastasiou, Boughezal, Petriello 2009



Update for ICHEP 2010

✦ Cross section predictions after resummation:
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Figure 1: Cross sections at the Tevatron for
√

s = 1.96 TeV and the LHC for
√

s = 7, 10,
14 TeV. Bands indicate scale uncertainties and PDF uncertainties combined in quadrature.
Light, medium and dark bands represent LO (NLL), NLO (NNLL) and NNLO (N3LL) in
RG-improved perturbation theory, respectively.

we will also show numbers using the CTEQ6.6 [24] (and NNPDF2.0? Requires some
programming because of the different method to compute the uncertainty as well
as the central value: rigorously, even for the central value one needs to iterate over
at least 100 sets of PDFs.) PDFs and the corresponding value of αs(mZ) (Note, however,
that they are NLO PDFs). We will keep the electroweak parameters (α, GF , sin2 θW ) at the
scale mZ and do not evolve them to the Higgs mass (which would be a tiny effect).

Our main results are summarized in Table 1, where our best predictions for the cross
section at the Tevatron with

√
s = 1.96 TeV and the LHC with

√
s = 7, 10, 14 TeV using

MSTW2008NNLO PDFs are shown. In Figure 1, we show the cross sections as functions of
mH , where we have combined the scale uncertainties and PDF uncertainties in quadrature.
We have also depicted the LO and NLO RG-improved cross sections in Figure 1, to show
the good perturbative convergence of our result. Note that the NNLO bands are not much
narrower than the NLO bands, because, as can be seen from Table 1, here the PDF uncertainty
is the dominant source of the errors, which can not be reduced by including higher order

4

 Ahrens, Becher, MN, Yang 2010 (to appear)



Update for ICHEP 2010

✦ State-of-the-art predictions (most precise to 
date) using MSTW2008NNLO PDFs:
mH [GeV] Tevatron LHC (7 TeV) LHC (10 TeV) LHC (14 TeV)

115 1.213+0.031+0.070
−0.007−0.075 18.17+0.53+0.46

−0.14−0.57 33.6+1.0+0.8
−0.2−1.0 57.8+1.6+1.4

−0.3−1.8

120 1.072+0.026+0.064
−0.006−0.069 16.72+0.48+0.43

−0.13−0.53 31.2+0.9+0.7
−0.2−1.0 53.9+1.5+1.3

−0.3−1.7

125 0.950+0.022+0.059
−0.005−0.063 15.43+0.44+0.40

−0.12−0.49 29.0+0.8+0.7
−0.2−0.9 50.4+1.4+1.2

−0.3−1.6

130 0.845+0.019+0.054
−0.004−0.058 14.28+0.40+0.37

−0.11−0.46 27.0+0.7+0.6
−0.2−0.8 47.2+1.3+1.1

−0.3−1.5

135 0.754+0.016+0.050
−0.004−0.053 13.25+0.36+0.35

−0.10−0.43 25.2+0.7+0.6
−0.2−0.8 44.4+1.2+1.0

−0.3−1.4

140 0.675+0.014+0.046
−0.003−0.049 12.33+0.33+0.33

−0.09−0.40 23.6+0.6+0.6
−0.2−0.7 41.8+1.1+1.0

−0.3−1.3

145 0.605+0.012+0.043
−0.003−0.045 11.49+0.31+0.32

−0.09−0.37 22.2+0.6+0.5
−0.1−0.7 39.4+1.0+0.9

−0.2−1.2

150 0.544+0.010+0.040
−0.002−0.042 10.74+0.28+0.30

−0.08−0.35 20.8+0.5+0.5
−0.1−0.6 37.2+1.0+0.9

−0.2−1.1

155 0.491+0.009+0.037
−0.002−0.039 10.05+0.26+0.29

−0.07−0.33 19.6+0.5+0.5
−0.1−0.6 35.2+0.9+0.8

−0.2−1.1

160 0.440+0.008+0.034
−0.002−0.036 9.36+0.24+0.27

−0.07−0.31 18.4+0.5+0.5
−0.1−0.6 33.2+0.8+0.8

−0.2−1.0

165 0.387+0.006+0.031
−0.002−0.032 8.54+0.22+0.25

−0.06−0.29 16.9+0.4+0.4
−0.1−0.5 30.6+0.8+0.7

−0.2−0.9

170 0.346+0.005+0.028
−0.002−0.030 7.92+0.20+0.24

−0.05−0.27 15.8+0.4+0.4
−0.1−0.5 28.7+0.7+0.7

−0.2−0.8

175 0.312+0.005+0.026
−0.001−0.027 7.41+0.18+0.23

−0.05−0.26 14.8+0.4+0.4
−0.1−0.5 27.1+0.7+0.6

−0.2−0.8

180 0.282+0.004+0.024
−0.001−0.025 6.94+0.17+0.22

−0.05−0.24 14.0+0.3+0.4
−0.1−0.4 25.7+0.6+0.6

−0.2−0.8

185 0.253+0.003+0.022
−0.001−0.023 6.45+0.16+0.21

−0.04−0.23 13.1+0.3+0.3
−0.1−0.4 24.1+0.6+0.6

−0.1−0.7

190 0.228+0.003+0.020
−0.001−0.021 6.03+0.14+0.20

−0.04−0.22 12.3+0.3+0.3
−0.1−0.4 22.8+0.6+0.5

−0.1−0.7

195 0.208+0.002+0.019
−0.001−0.020 5.68+0.13+0.19

−0.04−0.21 11.6+0.3+0.3
−0.1−0.4 21.7+0.5+0.5

−0.1−0.6

200 0.189+0.002+0.018
−0.001−0.019 5.37+0.13+0.18

−0.04−0.20 11.0+0.3+0.3
−0.1−0.3 20.7+0.5+0.5

−0.1−0.6

Table 1: Cross sections (in pb) for different Higgs masses at the Tevatron and the LHC, using
MSTW2008NNLO PDFs. As in [10], The first error accounts for scale variations, while the
second one reflects the uncertainty in the PDFs.

also uncertainty related to the experimental determination of the strong coupling constant αs,
which was estimated to be about ±6% in [10]. A more dedicated analysis of the combined
uncertainty from PDFs and αs is possible using the methods proposed in [16, 17]. [To do
or not to do, that is the question.] There is also a small uncertainty coming from the
use of heavy top limit in the calculation of QCD corrections, which has been shown to be a
very good approximation for a relatively light Higgs boson at NLO [18] and recently also at
NNLO [19, 20]. The same is not true for bottom quark loop, where an error of around 1%
should be assigned.

In our numerical evaluation we take the input parameters as [21, 22]

mt = 173.1 GeV , mb(mb) = 4.2 GeV ,

mZ = 91.1876 GeV , ΓZ = 2.4952 GeV , mW = 80.398 GeV , ΓW = 2.141 GeV ,

α−1(mZ) = 127.925 , GF (mZ) = 1.16208 × 10−5 GeV−2 , sin2 θW (mZ) = 0.23119 ,

and by default use the MSTW2008NNLO PDFs [23] with αs(mZ) = 0.11707. For comparison,

3

√
s (TeV)

σ
(p

b
)

1413121110987

60

50

40

30

20

10

0

Figure 2: Cross sections as functions of the center-of-mass energy at the LHC for Higgs masses
being 120 GeV (solid), 160 GeV (dashed) and 200 GeV (dotted).

mH [GeV] Tevatron LHC (7 TeV) LHC (10 TeV) LHC (14 TeV)

115 1.200+0.030+0.068
−0.006−0.068 18.23+0.54+0.52

−0.13−0.63 34.0+1.0+1.1
−0.2−1.3 58.9+1.7+2.1

−0.4−2.5

120 1.060+0.026+0.064
−0.005−0.063 16.76+0.48+0.47

−0.12−0.56 31.5+0.9+1.0
−0.2−1.2 54.8+1.5+1.9

−0.3−2.3

125 0.940+0.022+0.061
−0.004−0.059 15.46+0.44+0.43

−0.11−0.51 29.2+0.8+0.9
−0.2−1.1 51.2+1.4+1.7

−0.3−2.1

130 0.837+0.019+0.058
−0.004−0.055 14.29+0.40+0.39

−0.10−0.46 27.2+0.8+0.8
−0.2−1.0 47.9+1.3+1.6

−0.3−1.9

135 0.747+0.016+0.055
−0.004−0.052 13.25+0.37+0.36

−0.10−0.42 25.4+0.7+0.7
−0.2−0.9 44.9+1.2+1.5

−0.3−1.8

140 0.669+0.014+0.052
−0.003−0.049 12.31+0.34+0.33

−0.08−0.38 23.7+0.7+0.7
−0.2−0.8 42.2+1.1+1.3

−0.2−1.6

145 0.600+0.012+0.049
−0.003−0.046 11.47+0.31+0.30

−0.08−0.35 22.3+0.6+0.6
−0.1−0.8 39.8+1.1+1.2

−0.2−1.5

150 0.541+0.010+0.047
−0.002−0.043 10.71+0.29+0.28

−0.07−0.32 20.9+0.6+0.6
−0.1−0.7 37.6+1.0+1.2

−0.2−1.4

155 0.488+0.009+0.044
−0.002−0.041 10.02+0.26+0.26

−0.07−0.30 19.7+0.5+0.5
−0.1−0.6 35.6+0.9+1.1

−0.2−1.3

160 0.438+0.008+0.042
−0.002−0.038 9.32+0.24+0.24

−0.06−0.28 18.4+0.5+0.5
−0.1−0.6 33.4+0.9+1.0

−0.2−1.2

165 0.385+0.006+0.039
−0.002−0.035 8.50+0.22+0.22

−0.06−0.25 16.9+0.4+0.4
−0.1−0.5 30.8+0.8+0.9

−0.2−1.1

170 0.345+0.005+0.036
−0.002−0.033 7.88+0.20+0.20

−0.05−0.23 15.8+0.4+0.4
−0.1−0.5 28.9+0.7+0.8

−0.2−1.0

175 0.312+0.005+0.034
−0.001−0.031 7.36+0.18+0.19

−0.05−0.22 14.8+0.4+0.4
−0.1−0.5 27.3+0.7+0.8

−0.2−0.9

180 0.282+0.004+0.032
−0.001−0.029 6.90+0.17+0.18

−0.05−0.21 14.0+0.3+0.4
−0.1−0.4 25.8+0.6+0.7

−0.2−0.9

185 0.254+0.003+0.030
−0.001−0.027 6.41+0.16+0.17

−0.04−0.19 13.0+0.3+0.3
−0.1−0.4 24.2+0.6+0.7

−0.1−0.8

190 0.229+0.003+0.028
−0.001−0.025 5.99+0.14+0.16

−0.04−0.18 12.3+0.3+0.3
−0.1−0.4 22.9+0.5+0.6

−0.1−0.8

195 0.209+0.003+0.027
−0.001−0.024 5.63+0.13+0.15

−0.03−0.17 11.6+0.3+0.3
−0.1−0.3 21.7+0.5+0.6

−0.1−0.7

200 0.191+0.002+0.025
−0.001−0.022 5.32+0.12+0.15

−0.03−0.16 11.0+0.3+0.3
−0.1−0.3 20.7+0.5+0.5

−0.1−0.7

Table 2: Cross sections (in pb) for different Higgs masses at the Tevatron and the LHC, using
CTEQ6.6 PDFs.
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Figure 2: Cross sections as functions of the center-of-mass energy at the LHC for Higgs masses
being 120 GeV (solid), 160 GeV (dashed) and 200 GeV (dotted).
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Figure 2: Cross sections as functions of the center-of-mass energy at the LHC for Higgs masses
being 120 GeV (solid), 160 GeV (dashed) and 200 GeV (dotted).
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EFT-based predictions for top-pair production 
at Tevatron and LHC

Ahrens, Ferroglia, MN, Pecjak, Yang 2009 & 2010



State of the art

✦ Fixed-order NLO calculations:
✦ total cross section

✦ differential
✦ Fixed-order NNLO calculations:

✦ none exist! (but several pieces available)
✦ “leading terms” (enhanced near threshold) 

for total cross section
✦ “leading terms” for distributions

Nason, Dawson, Ellis 1988
Beenakker et al. 1989

Nason, Dawson, Ellis 1989
Mangano, Nason, Ridolfi 1992 
Frixione, Mangano, Nason, Ridolfi 1995

Beneke, Falgari, Schwinn 2009 
Czakon, Mitov, Sterman 2009
Ahrens, Ferroglia, MN, Pecjak, Yang 2010

Ahrens, Ferroglia, MN, Pecjak, Yang 2009



State of the art

✦ Threshold resummation at NLL:
✦ total cross section

✦ distributions
✦ Resummation at NNLL+NLO matching:

✦ total cross section
✦ distributions

Bonciani, Catani, Mangano, Nason 1998 
Berger, Contopanagos 1995 
Kidonakis, Laenen, Moch, Vogt 2001

Beneke, Falgari, Schwinn 2009 
Czakon, Mitov, Sterman 2009

Kidonakis, Vogt 2003; Banfi, Laenen 2005 

Ahrens, Ferroglia, MN, Pecjak, Yang 2010



Dominance of threshold terms

✦ Fixed-order results for invariant mass 
distribution at Tevatron and LHC:

✦ Leading singular terms near partonic threshold 
                        give dominant contributions even 
at low and moderate M values
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Figure 2: Fixed-order predictions for the invariant mass spectrum at LO (light bands) and
NLO (dark bands) for the Tevatron (left) and LHC (right). We use MSTW2008NLO PDFs [87]
with αs(MZ) = 0.120. The width of the bands reflects the uncertainty of the spectrum under
variations of the matching and factorization scales. The dashed lines refer to the leading terms
in the threshold expansion.

dark NLO bands and the dashed lines is due to the small contributions from the subleading
terms dσNLO,subleading in (102). The fact that, even at these relatively low values of M , the
leading terms provide a very good approximation to the full NLO result provides a strong
motivation to study within our formalism higher-order corrections to integrated quantities
such as the total cross section and forward-backward asymmetry, which receive their dominant
contributions from low values of the invariant mass.

We will always do the matching onto fixed-order results as in (102) and (103), when the goal
is to provide quantitative phenomenological predictions. Such a matching is straightforward
for integrated quantities such as the total cross section and forward-backward asymmetry,
since the NLO results in fixed order are available in analytic form. For the invariant mass
distribution, on the other hand, the fixed-order NLO results are available in the form of Monte
Carlo programs such as MCFM [88]. This makes it difficult to get accurate values of the top-
quark pair invariant mass spectrum at high M , where the differential cross section is small,
and makes it impractical to calculate the spectrum with the scale choice µf = M used in
the next section, since doing so would require to run the program separately at each point
in µf . (Monte Carlo programs generate the invariant mass spectrum by first producing a set
of events for a given µf , and then grouping them into bins in M). When we study certain
aspects of the invariant mass distribution in Section 6.1, we will take the NLO correction in the
threshold approximation, so that (102) and (103) are evaluated with dσNLO → dσNLO, leading.
This is still a good approximation to the full NLO result, and allows us to study the qualitative
behavior of the invariant mass spectrum with µf = M over a large range of M , as well as
PDF uncertainties, in a simple way. For this purpose, we also define an NNLO approximation
which includes only the singular terms at threshold in the NLO correction:

dσNNLO, leading = dσNLO, leading + dσ(2), approx . (104)
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Invariant mass distributions

✦ Fixed-order vs. resummed PT (matched to NLO):
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Figure 8: Left: Fixed-order predictions for the invariant mass spectrum at LO (light), NLO
(darker), and approximate NNLO (dark bands) for the Tevatron (top) and LHC (bottom).
Right: Corresponding predictions at NLL (light) and NLO+NNLL (darker bands) in re-
summed perturbation theory. The width of the bands reflects the uncertainty of the spectrum
under variations of the matching and factorization scales, as explained in the text.

added the uncertainties associated with variations of µh, µs, and µf in quadrature. We have
also included uncertainties associated with the PDFs, by using the set of MSTW2008NNLO
PDFs from [87] at 90% confidence level. The perturbative scale uncertainties are smaller or
comparable than those from the PDFs only once the NNLL or approximate NNLO corrections
are taken into account. For the practical reasons explained earlier, we have not matched the
higher-order results with the fixed-order NLO results. However, the threshold approximation
works rather well. For reference, at the Tevatron the exact NLO results are (38.6+5.1

−5.2) fb/GeV
for M = 400 GeV and (24.8+4.5

−4.8) · 10−3 fb/GeV for M = 1000 GeV, while at the LHC they are
(654+98

−89) fb/GeV for M = 400 GeV and (6.84+1.40
−1.11) fb/GeV for M = 1000 GeV. The deviations

from the leading NLO terms shown in the second line in both parts of the table are smaller
than 7% for the Tevatron and 5% for the LHC.

6.2 Invariant mass distribution: Phenomenological results

After these systematic studies, we now present our final results for the tt̄ invariant mass
distributions at the Tevatron and LHC. Here and below, we will use different sets of PDFs,

32
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Comparison with CDF data

✦ Overlay (not a fit!) for mt=173.1 GeV:
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Figure 12: Comparison of the RG-improved predictions for the invariant mass spectrum with
CDF data [9]. The value mt = 173.1GeV has been used. No fit to the data has been performed.

6.3 Total cross section: Phenomenological results

The total cross section is obtained in our approach by integrating numerically the doubly
differential cross section in the ranges −1 < cos θ < 1 and 2mt < M <

√
s. In this case it

is a simple matter to match onto NLO in fixed-order perturbation theory, using the analytic
results of [16]. To do this, however, we can no longer correlate the factorization scale µf

with M , as we did when studying the invariant mass spectrum. Instead, we should resort to
representative average values of M , which characterize the spectrum in the region yielding
sizable contributions to the total cross section. One possibility is to take the location of the
peak in the dσ/dM distributions, which is Mpeak ≈ 375 GeV for the Tevatron and Mpeak ≈
385 GeV for the LHC (see Figure 8). Another possibility is to take the average value 〈M〉 of the
distributions, for which we find 〈M〉 ≈ 445 GeV for the Tevatron and 〈M〉 ≈ 485 GeV for the
LHC. [Check numbers!] As previously, we take the fixed value µf = 400GeV as our default
choice. On the other hand, we are still free to choose the hard and soft scales as we have done
so far and match with the fixed-order result as shown in (102). We display in Table 3 the
central values and scale uncertainties for the total cross section obtained using this procedure.
The results in resummed perturbation theory use µh = M and µs chosen according to (105) by
default, and the uncertainties are obtained by varying these scales and the factorization scale
µf up and down by a factor of two and adding the different uncertainties in quadrature. The
perturbative uncertainties in the fixed-order results are obtained by varying the factorization
scale up and down by a factor of two from its default value. In addition to the perturbative
uncertainties, we also list the PDF uncertainties obtained by evaluating the cross section with
the appropriate set of MSTW2008 PDFs at 90% confidence level. As shown in Table 2, the
LO cross sections are evaluated using LO PDF sets, the NLL and NLO cross sections using
NLO PDF sets, and the NNLL and approximate NNLO cross sections using NNLO PDF sets.
These different classes of predictions are separated by horizontal lines.
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Features of inv. mass distribution

✦ Spectrum predictions in MS scheme, obtained 
with                                 :

✦ Improved convergence

mt [GeV]

LO 164.0

NLO, NLL 171.7

NNLO, NNLL 173.1

Table 8: Values of the pole mass mt in different orders of perturbation theory, corresponding
to a fixed value mt(mt) = 164.0GeV.
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Figure 18: Left: Resummed results for dσ/dM , changing mt at different orders in perturbation
theory as shown in Table 8. Right: The same but in fixed order.

have been anticipated by looking at Figure 16 and Table 8. The increase of the cross section
and invariant mass distributions in higher orders is to a large extent compensated by the effect
of increasing the value of the pole mass.

7 Conclusions

We have studied higher-order perturbative corrections to the doubly differential cross section
for tt̄ hadroproduction in the partonic threshold region, where the invariant mass of the tt̄
pair approaches the partonic center-of-mass energy. This involved using soft-collinear effective
theory to derive a factorization formula expressing the hard-scattering kernels as products
of matrix-valued hard and soft matching coefficients in this kinematic regime, calculating
these coefficients to NLO in perturbation theory, and solving the RG equations for these
functions directly in momentum space to achieve NNLL accuracy for the resummed differential
cross section. We also presented an approximate NNLO formula, which includes all terms
proportional to singular plus distributions in the variable (1− z), as well the scale-dependent
part of the coefficient of the δ(1 − z) term. The momentum-space resummation techniques
allow for a straightforward matching of the resummed results with the exact results at NLO
in fixed-order perturbation theory. We used this fact to perform numerical studies of the
invariant mass distribution, the total cross section, and the forward backward asymmetry at
NLO+NNLL order.
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Figure 17: Position of the peak of the invariant mass distribution (left) and of the mean
invariant mass 〈M〉 (right) as functions of the top-quark mass.

Mpeak [GeV] 〈M〉 [GeV]

LO 375.6+0.5
−0.4 450.2+1.7

−1.5

NLL 374.5+0.2
−0.2 443.3+0.6

−0.8

NNLL 376.1+0.2
−0.2 445.5+0.4

−0.3

NNLL + NLO 375.2+0.3
−0.2 445.0+0.4

−0.4

Table 7: Values of the peak position of the mean invariant mass, obtained with mt = 173.1GeV.

smaller than the present experimental error in this parameter, it is nevertheless useful to
consider predictions for the cross section (and distributions) parameterized in terms of a more
suitable mass parameter. For the purpose of illustration, we investigate in the following the
impact of using the MS mass mt(µ). We do this by changing the value of the pole mass mt

at different orders in perturbation theory, such that the “physical” mass mt(µ) remains the
same. This is implemented through the relation

mt = mt(µ)

[
1 +

αs(µ)

π
d(1) +

(
αs(µ)

π

)2

d(2) + . . .

]
, (122)

where for QCD (N = 3) with nf = 5 active, massless flavors [102–104]

d(1) =
4

3
+ Lm , d(2) =

2053

288
+

π2

18
+

π2

9
ln 2 −

ζ3

6
+

379

72
Lm +

37

24
L2

m , (123)

with Lm = ln(µ2/m2
t (µ)). We use a fixed input value mt ≡ mt(mt) = 164.0GeV, chosen such

that at two-loop order the corresponding pole-scheme parameter mt in (122) coincides with
our default value mt = 173.1GeV. In lower orders we adjust mt such that the MS mass stays
unchanged, which leads to the values collected in Table 8. In Figure 18, we show the impact
on the invariant mass distribution of choosing mt in the way described above. Compared with
Figure 8, we observe an improved convergence of the perturbation theory, both in fixed order
and after threshold resummation. This finding, which has previously been made in [48], could
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Velocity distribution

✦ Transform to relative 3-velocity of top quarks 
in      rest frame:

✦ Top quarks are relativistic, βt ~ 0.4-0.9
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Figure 11: Distributions dσ/dβt at the Tevatron (left) and LHC (right).

two plots show K factors, which are defined as the ratio of the cross section to the default
lowest-order prediction dσLO,def/dM . Contrary to Figure 7, we now use the same normaliza-
tion in both fixed-order and resummed perturbation theory, so that the two spectra can more
readily be compared to each other. The lower plots show the corresponding spectra directly.
We observe similar behavior as in the low-mass region. The bands obtained in fixed-order
perturbation theory become narrower in higher orders and overlap. The bands obtained in
resummed perturbation theory are narrower than the corresponding ones at fixed order. The
leading-order resummed prediction is already close to the final result.

The information contained in Figures 8–10 can be represented differently in terms of the
very useful distribution dσ/dβt, with βt defined as in (4). A simple change of variables yields

dσ

dβt
=

2mtβt

(1 − β2
t )

3
2

dσ

dM
. (106)

The resulting spectra for the Tevatron and LHC, obtained using RG-improved perturbation
theory, are shown in Figure 11. As before, the distributions are normalized such that the area
under the curves corresponds to the total cross section. Recall that the physical meaning of
the variable βt is that of the 3-velocity of the top quarks in the tt̄ rest frame. The distributions
show that the dominant contributions to the cross section arise from the region of relativistic
top quarks, with velocities of order 0.4–0.8 at the Tevatron and 0.5–0.9 at the LHC. We will
come back to the significance of this observation in the next section.

In Figure 12, we compare our RG-improved prediction for the invariant mass spectrum
to a measurement of the CDF collaboration obtained using the “lepton + jets” decay mode
of the top quark [9]. We observe an overall good agreement between our prediction and the
measurement, especially for higher values of M . Apparently, there is no evidence of non-
standard resonances in the spectrum. The only small deviation from our prediction concerns
the peak region of the distribution, shown in more details in the right plot. This deviation
has also been observed in [9], where a Monte Carlo study of the SM expectation has been
performed.
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to the appearance of several kinematic variables. The current frontier is NLL calculations for
the differential distributions [44, 52] and the forward-backward asymmetry [53]. Extending
these results to NNLL order has been made possible by our recent calculation of the two-loop
anomalous-dimension matrices [54, 55]. We have presented an approximate NNLO formula
for the tt̄ invariant mass distribution in [56]. The goal of the present paper is to derive
a renormalization-group (RG) improved expression for the doubly differential cross section
at NNLL order, in which all threshold-enhanced terms are resummed. We will match this
expression with the exact fixed-order NLO results and study the top-pair invariant mass
distribution, the forward-backward asymmetry, and the total cross section at NLO+NNLL
order. The predictions obtained in this way are the most precise available at present.

The paper is organized as follows. In Section 2 we review the kinematics and the structure
of factorization in the threshold region. We then derive the factorization formula for the
hard-scattering kernels into products of hard and soft matrices using soft-collinear effective
theory (SCET) in Section 3. In Section 4 we present the calculation of the hard and soft
matrices at NLO, and describe several checks on our results. Section 5 deals with the RG
properties of the hard and soft functions. We derive a formula for the resummed cross section
in momentum space using RG methods and describe its evaluation at NNLL order. We
also review the derivation of the approximate NNLO formula, which has been presented first
in [56]. In Section 6 we perform numerical studies of the invariant mass distribution, the total
cross section, and the forward-backward asymmetry, utilizing both RG-improved perturbation
theory at NNLL order and the NNLO approximate formula. We conclude in Section 7.

2 Kinematics and factorization at threshold

We consider the process

N1(P1) + N2(P2) → t(p3) + t̄(p4) + X(pX) , (1)

where X is an inclusive hadronic final state. At Born level this proceeds through the qq̄
annihilation and gluon-fusion channels

q(p1) + q̄(p2) → t(p3) + t̄(p4) ,

g(p1) + g(p2) → t(p3) + t̄(p4) , (2)

where p1 = x1P1 and p2 = x2P2. We define the kinematic invariants

s = (P1 + P2)
2 , ŝ = (p1 + p2)

2 , t1 = (p1 − p3)
2 − m2

t , u1 = (p2 − p3)
2 − m2

t , (3)

and momentum conservation at Born level implies ŝ + t1 + u1 = 0.
In this section we consider the structure of the differential cross section near the partonic

threshold. While the fully differential cross section depends on three kinematic variables, in
this paper we are mainly interested in the doubly differential cross section expressed in terms
of the invariant mass M of the tt̄ pair and the scattering angle θ between "p1 and "p3 in the
partonic center-of-mass frame. To describe this distribution we introduce the variables

z =
M2

ŝ
, τ =

M2

s
, βt =

√

1 −
4m2

t

M2
. (4)

2

tt̄

Tevatron LHC



Total cross section

✦ Usually, resummation is done around absolute 
threshold at s=4mt

2  (non-relativistic top quarks)
✦ Mixed Coulomb and soft gluon singularities 

arise for 
✦ Obtain partial NNLO results                                

based on small-β expansion

✦ But this covers only a tiny                      portion 
of phase space!

β =
�

1− 4m2
t /ŝ→ 0

Moch, Uwer 2008;  Beneke et al. 2009



Total cross section

✦ Fact that             and                                     
shape of βt distribution                                  
imply that small-β region                                        
is unimportant for the                                           
total cross section 

✦ In our approach, soft                                    
gluon effects are resummed also far above 
absolute threshold

✦ Different systematics & more accurate results!
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two plots show K factors, which are defined as the ratio of the cross section to the default
lowest-order prediction dσLO,def/dM . Contrary to Figure 7, we now use the same normaliza-
tion in both fixed-order and resummed perturbation theory, so that the two spectra can more
readily be compared to each other. The lower plots show the corresponding spectra directly.
We observe similar behavior as in the low-mass region. The bands obtained in fixed-order
perturbation theory become narrower in higher orders and overlap. The bands obtained in
resummed perturbation theory are narrower than the corresponding ones at fixed order. The
leading-order resummed prediction is already close to the final result.

The information contained in Figures 8–10 can be represented differently in terms of the
very useful distribution dσ/dβt, with βt defined as in (4). A simple change of variables yields

dσ

dβt
=

2mtβt

(1 − β2
t )

3
2

dσ

dM
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The resulting spectra for the Tevatron and LHC, obtained using RG-improved perturbation
theory, are shown in Figure 11. As before, the distributions are normalized such that the area
under the curves corresponds to the total cross section. Recall that the physical meaning of
the variable βt is that of the 3-velocity of the top quarks in the tt̄ rest frame. The distributions
show that the dominant contributions to the cross section arise from the region of relativistic
top quarks, with velocities of order 0.4–0.8 at the Tevatron and 0.5–0.9 at the LHC. We will
come back to the significance of this observation in the next section.

In Figure 12, we compare our RG-improved prediction for the invariant mass spectrum
to a measurement of the CDF collaboration obtained using the “lepton + jets” decay mode
of the top quark [9]. We observe an overall good agreement between our prediction and the
measurement, especially for higher values of M . Apparently, there is no evidence of non-
standard resonances in the spectrum. The only small deviation from our prediction concerns
the peak region of the distribution, shown in more details in the right plot. This deviation
has also been observed in [9], where a Monte Carlo study of the SM expectation has been
performed.
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Figure 4. The O(αs) corrections to dσ/dβ at the
LHC. Here µf = mt.
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Total cross section

✦ Detailed predictions for total cross sections:

✦ Singular terms dominate NLO corrections
✦ Resummation stabilizes scale dependence

Tevatron LHC (7TeV) LHC (10TeV) LHC (14TeV)

σLO 4.49+1.71
−1.15

+0.24
−0.19 84+29

−20
+4
−5 217+70

−49
+10
−11 495+148

−107
+19
−24

σNLL 5.07+0.37
−0.36

+0.28
−0.18 112+18

−14
+5
−5 276+47

−37
+10
−11 598+108

−94
+19
−19

σNLO, leading 5.49+0.78
−0.78

+0.31
−0.20 134+16

−17
+7
−7 341+34

−38
+14
−14 761+64

−75
+25
−26

σNLO 5.79+0.79
−0.80

+0.33
−0.22 133+21

−19
+7
−7 341+50

−46
+14
−15 761+105

−101
+26
−27

σNLO+NNLL 6.30+0.19
−0.19

+0.31
−0.23 149+7

−7
+8
−8 373+17

−15
+16
−16 821+40

−42
+24
−31

σNNLO, approx (scheme A) 6.14+0.49
−0.53

+0.31
−0.23 146+13

−12
+8
−8 369+34

−30
+16
−16 821+71

−65
+27
−29

σNNLO, approx (scheme B) 6.05+0.43
−0.50

+0.31
−0.23 139+9

−9
+7
−7 349+23

−23
+15
−15 773+47

−50
+25
−27

Table 3: Results for the total cross section in pb, using the default choice µf = 400GeV.
The first set of errors refers to perturbative uncertainties associated with scale variations, the
second to PDF uncertainties. The most advanced prediction is the NLO+NNLL expansion
highlighted in gray.

Tevatron LHC (7TeV) LHC (10TeV) LHC (14TeV)

σLO 6.66+2.95
−1.87

+0.34
−0.27 122+49

−32
+6
−7 305+112

−76
+14
−16 681+228

−159
+26
−34

σNLL 5.20+0.40
−0.36

+0.29
−0.19 103+17

−14
+5
−5 253+44

−36
+10
−10 543+101

−88
+18
−19

σNLO, leading 6.42+0.42
−0.76

+0.35
−0.23 152+7

−15
+8
−8 381+12

−32
+16
−17 835+18

−60
+29
−30

σNLO 6.72+0.36
−0.76

+0.37
−0.24 159+20

−21
+8
−9 402+49

−51
+17
−18 889+107

−106
+31
−32

σNLO+NNLL 6.48+0.17
−0.21

+0.32
−0.25 146+7

−7
+8
−8 368+20

−14
+19
−15 813+50

−36
+30
−35

σNNLO, approx (scheme A) 6.72+0.45
−0.47

+0.33
−0.24 162+19

−14
+9
−9 411+49

−35
+17
−20 911+111

−77
+35
−32

σNNLO, approx (scheme B) 6.55+0.32
−0.41

+0.33
−0.24 149+10

−9
+8
−8 377+28

−23
+16
−18 832+65

−50
+31
−29

Table 4: Same as Table 3, but with the “educated” scale choice µf = mt.

A few comments are in order concerning the results shown in the table. At NLO the
cross sections σNLO, leading evaluated using only the leading singular terms from the threshold
expansion reproduce between 95% (for the Tevatron) to almost 100% (for the LHC) of the
exact fixed-order result at the default values of the factorization scale. The subleading terms
in (1 − z), obtained by integrating dσNLO, subleading, contribute the remaining few percent. In
other words, the singular terms capture about 85% of the NLO correction at the Tevatron and
practically 100% of it at the LHC. We cannot say whether the threshold expansion works so
well also at higher orders in perturbation theory, although this does not seem unreasonable.
Our best prediction is obtained by matching the fixed-order result with the resummed result
at NLO+NNLL accuracy and is highlight in gray. The effect of resummation is roughly a
10–15% enhancement over the fixed-order NLO result. A more important effect is that the
resummation stabilizes the scale dependence significantly. Concerning the approximate NNLO
schemes, the results from scheme A are noticeably higher than those from scheme B, but these
differences are well inside the quoted errors. Since the two schemes differ only by terms
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scale uncertainty PDF uncertainty

Cross section (pb)



Total cross section

✦ Small-β expansion misses important NLO effects 

✦ Likely that this remains true at NNLO

scale uncertainty PDF uncertainty

Cross section (pb) Tevatron LHC (7TeV) LHC (10TeV) LHC (14TeV)

σNLO 5.79+0.79
−0.80

+0.33
−0.22 133+21

−19
+7
−7 341+50

−46
+14
−15 761+105

−101
+26
−27

σNLO, leading 5.49+0.78
−0.78

+0.31
−0.20 134+16

−17
+7
−7 341+34

−38
+14
−14 761+64

−75
+25
−26

σNLO, β-exp. v1 8.22+0.54
−0.88

+0.49
−0.33 157+12

−16
+8
−8 395+24

−36
+14
−15 877+49

−73
+29
−30

σNLO, β-exp. v2 6.59+0.96
−0.95

+0.38
−0.25 151+15

−18
+8
−8 386+30

−39
+15
−16 863+49

−73
+29
−30

σNLO+NNLL 6.30+0.19
−0.19

+0.31
−0.23 149+7

−7
+8
−8 373+17

−15
+16
−16 821+40

−42
+24
−31

σNNLO, β-exp. v1 7.37+0.01
−0.20

+0.39
−0.29 156+2

−5
+8
−8 392+4

−11
+16
−17 865+5

−17
+29
−30

σNNLO, β-exp.+potential v1 7.30+0.01
−0.18

+0.39
−0.28 158+3

−6
+8
−8 398+7

−13
+16
−17 880+12

−22
+29
−31

σNNLO, β-exp. v2 6.98+0.17
−0.40

+0.37
−0.27 156+2

−6
+8
−8 394+2

−10
+16
−17 871+0

−14
+29
−31

σNNLO, β-exp.+potential v2 6.95+0.16
−0.39

+0.36
−0.26 159+3

−7
+8
−8 401+6

−12
+17
−17 888+7

−19
+30
−32

Table 5: Results for the total cross section in pb, using the default choice µf = 400GeV. Some
numbers from Table 3 are compared with results obtained from different implementations of
the small-β expansion (see text for explanation). The errors have the same meaning as before.

On the other hand, the small-β expansion version 1 tends to overestimate the cross section at
the Tevatron by more than 2 pb. By incorporating the exact Born prefactors (version 2) the
small-β expansion works better, but still it overestimate the exact results by about 1 pb. At
the LHC, the small-β expansion happens to give results closer to the exact answers. However,
as we will now explain, this is a coincidence. In Figure 14 we plot the NLO corrections to the
cross sections, including the parton luminosities, as functions of β. The black solid curves show
the exact results, the red solid curves our leading singular terms, and the dotted curves the
results obtained using version 2 of the small-β expansion (the dashed curves will be explained
in the next subsection). In the small-β region, all the approximations work rather well as
expected. With increasing β, the different approximations start to deviate from one another.
We observe that, at both the Tevatron and the LHC, our approximations always reproduce the
shapes of the exact results quite well, which is not at all achieved by the small-β expansion.
The fact that the small-β expansion overestimates the cross section at the Tevatron, where the
qq̄ channel dominates, is evident from the left plots in Figure 14. At the LHC, where the gg
channel dominates, the small-β expansion does not reproduce the shapes of the exact results,
even though it happens that the integrated cross sections are close to the exact ones due to
a coincidental cancellation. However, it is unlikely that a similar cancellation will happen at
NNLO.

We next compare our best prediction, NLO+NNLL, to the best prediction obtained using
the small-β expansion at NNLO, which is obtained by adding the approximate NNLO correc-
tions derived using the small-β expansion to the exact NLO cross sections. Without knowing
the exact expression for the NNLO corrections, it is hard to tell which one is closer to the
true answer, but we can study the validity of small-β expansion by investigating the effects
of the subleading terms in β that are contained in our results. We have included in Table 5
the numerical results for the cross section obtained by evaluating the small-β expansion (110)
of our approximate NNLO formula, without including the extra potential terms (labeled “β-
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Conclusions
✦ Effective field theory provides efficient tools for 

addressing difficult collider-physics problems 
✦ Systematic “derivation” of factorization theorems 

(known ones and ones to be discovered) and 
simple, transparent resummation techniques

✦ Detailed applications exist for Drell-Yan, Higgs,  
and top-quark pair production

✦ Longer-term goal is to understand resummation 
at NNLL+NLO order for jet processes, such as 
pp→n jets+V (with n≤3, V=γ,Z,W)


