Optimisation of LHC beam conditions

by Helmut Burkhardt / CERN BE/ABP for the LHC team

- short introduction with few words on the LHC status (more by S. Myers in plenary)
- with main parameters, beam-beam effects
- experimental conditions : luminosity, background, knowledge of IP parameters
- luminosity : optimisation and normalisation

Reporting from the machine team - on work done in close collaboration with the experiments

Related meetings at CERN, - machine + experiments (\#machine people < \#institutes in experiments) :
LBS LHC Background Study Group; dealing with beam conditions for Expts., open WG, chaired by me
LPC LHC Programme Coordination, chaired by M. Ferro-Luzzi (next speaker)

Layout of the LHC

94 collimators (phase 1)

Few words on the LHC status

LHC :
End of 2009 first collisions, mostly at injection energy $2 \times 450 \mathrm{GeV}$
2010 : commissioning and first year of operation with collisions at high energy;

- already $350 \mathbf{~ n b}^{-1}$ delivered per experiment
- main LHC challenge : damage potential,
- enormous stored energy : nominal is 10 GJ in magnets, 362 MJ in beam
- currently 2.5 GJ in magnets, 0.5 MJ in beam
- next : double intensity $24+24$ bunches; run like that during August

	LHC design	July 2010
Momentum at collision, TeV/c	$\mathbf{7}$	$\mathbf{3 . 5}$
Luminosity, $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$	$\mathbf{1 . 0 E}+\mathbf{3 4}$	$\mathbf{1 . 6 E + 3 0}$
Dipole field at top energy, \mathbf{T}	$\mathbf{8 . 3 3}$	$\mathbf{4 . 1 7}$
Number of bunches, each beam	$\mathbf{2 8 0 8}$	$\mathbf{1 2}$
Particles / bunch	$\mathbf{1 . 1 5 E}+\mathbf{1 1}$	$\mathbf{0 . 9 E + 1 1}($ up to $1.3 \mathrm{E}+11)$
Typical beam size in ring, $\boldsymbol{\mu m}$	$\mathbf{2 0 0}-\mathbf{3 0 0}$	$\mathbf{3 0 0 - 5 0 0}$
Beam size at $\mathrm{IP}, \boldsymbol{\mu m}$	$\mathbf{1 7}$	$\mathbf{5 9}$

LHC fill 1233 from last week-end

Stable beams for $\mathbf{1 9}$ hours (18/07 10:57 to 19/07 5:59); initially $\mathbf{L}=\mathbf{1 . 6 5 e 3 0} \mathbf{c m}-\mathbf{2 s} \mathbf{- 1}$; 70nb-1 from this fill Luminosity by request reduced for ALICE, earlier in this fill also for LHCb
1.2 e 12 total beam intensities; 13 bunches; $8+8$ colliding each experiment; $\beta^{*}=3.5 \mathrm{~m}$

Factors needed to go to nominal : \#bunches $2808 / 8=351 ; \beta^{*} 3.5 / 0.55=6.4 ; \mathrm{Eb} 7 / 3.5=2$; Intensity $(1.15 / 0.9)^{\wedge} 2=1.6$ together 7300 which gets us to $1.2 \mathrm{e} 34 \mathrm{~cm}-2 \mathrm{~s}-1$ (extra 20 loss in crossing angle)

Reference numbers, nominal LHC $\mathrm{f}_{\mathrm{RF}}=400.7896 \mathrm{MHz}$
$\lambda_{\mathrm{RF}}=0.748 \mathrm{~m}$ or 2.4951 ns
35640 RF buckets
Bunches spaced by multiples of 25 ns or 10 buckets, allowing for a maximum of 3564 bunches

Gaps required for kicker timing with
a 119 bunch abort gap $\sim 3 \mu \mathrm{~s}$
Inject batches of
2,3 or 4×72 bunches
1 batch $=72$ bunches
total $39 \times 72=\mathbf{2 8 0 8}$ bunches

A full LHC turn is $88.9244 \mu \mathrm{~s}$

Illustration of collisions from few bunches as relevant for current operation

Crossing angle required for many bunches

Crossing angle needed for bunch spacing below $21 \times 25 \mathrm{~ns}$ to avoid encounters closer than $\sim 6 \sigma$
Angle scales with σ or $1 / \sqrt{ } \boldsymbol{\beta} *$ and $1 / \sqrt{ } \mathbf{E}_{b}$
Nominal angle at $0.55 \mathrm{~m}, 7 \mathrm{TeV}$ is $\pm 142.5 \mu \mathrm{rad}$
2×15 parasitic crossings $\pm 58 \mathrm{~m}$ from IP at $7.5-13 \sigma$
Maximum is 156 bunches without crossing angle
In 7/2010 : $\beta^{*}=3.5 \mathrm{~m}, 3.5 \mathrm{TeV}, 100 \mu \mathrm{rad}$ in $1 \& 5$

Signal exchange and status pages

Automatic exchange of data :
Luminosity, backgrounds - from the experiments
Machine : settings and measurements of beam parameters, currents ..
Basis for optimisation and essential for luminosity optimization and calibration scans.

Main machine induced background sources

and how to distinguish between them (in practice not always obvious)

1. Beam gas scattering on residual gas, always present; pressure and intensity dependent
2. Halo - losses by slow drift, on primary, secondary, tertiary collimators ; lifetime - collimation dependent
3. Collision related - only there when in collisions; depending in separation in IPs "signal" if originating by collisions at the IP "collision - cross talk" background - if generated in other IPs

Simulations

we are providing rather complete sets of simulations for all known sources
for different running scenarios and energies
For details see http://project-lhc-bkg-sim.web.cern.ch

Halo part by the collimation team (A. Rossi et. al.)
Beam gas with input from the vacuum group and cross talk; PhD student Yngve Levinsen Geometry and secondaries around IPs up to experiments : Rob Appleby (2\&8), Roderik Bruce (1\&5) with lots of help from the experiments - who use this as input for detector simulations including Nikolai Mokhov, Vadim Talanov, ..

Background Sources \& Simulations

Primary graphite Secondary graphite
collimator

collimator

Current backgrounds

at least on some occasions, a good agreement between data and simulation in shape and magnitude was seen

Current background levels are typically very low and to some extend welcome to see the beam

- We still have a very long way to go
- nearly 4 orders of magnitude in peak luminosity
- Backgrounds may increase faster

Example beam gas : intensity limit now $1.2 \times 10^{12} @ 3.5 \mathrm{TeV}$. Nominal is 3.2×10^{14} at 7 TeV / beam in addition to the factor of 300 in intensity we may get a factor of 100 in dynamic pressure increase together this is would be an increase of 3×10^{4}

IP parameters, vertex information from experiments

vertex distributions and positions in $\mathbf{x}, \mathbf{y}, \mathbf{z}$; measured by the experiments; IPAC'10 paper with ATLAS

time from Apr 4-17:26 CET (h)

Longitudinal and transverse beam sizes are also measured on the machine side - wire scanners, synchrotron light monitors
Was already very useful for cross calibration of instruments
Can be expected to further gain interest for the detailed fill analysis as a basis to understand the emittance and luminosity evolution during a fill and for orbit optimisation around IPs Possible to locate beam-pipe and screen by secondary interactions ; can help for realignment and to gain space for reducing the beam pipe radius

Beam-beam effects

beam1 beam2

for small \mathbf{x} approx. linear kick $\mathbf{x}^{\prime} \propto \mathbf{x}$ like quadrupole but same in both planes, defocusing if beam1, 2 have same charge (LHC) and focusing for opposite charge (e+e-, $\mathbf{p} \overline{\mathbf{p}}$)
 $\begin{gathered}\text { tune shift from } \\ \text { linear kick }\end{gathered} \quad \Delta Q_{x}=-\frac{\beta_{x}}{4 \pi} \frac{\Delta x^{\prime}}{x}$
this maximum tune shift - effective for particles at the bunch centre - is used to quantify the beam-beam effect.
$N=$ bunch population,
$r_{c}=$ classical particle (e, p) radius
$\xi_{x, y}=\frac{r_{c} N \beta_{x, y}^{*}}{2 \pi \gamma \sigma_{x, y}\left(\sigma_{x}+\sigma_{y}\right)} \quad \begin{gathered}\text { LEP } \\ \xi_{x, y} \sim .03-.08\end{gathered}$

LHC round beams, const $\varepsilon_{\mathrm{N}} \quad \sigma_{x, y}=\sqrt{\beta_{x, y} \epsilon_{N} / \gamma}$

$$
\xi=\frac{r_{c} N}{4 \pi \epsilon_{N}}
$$

N	ξ
5×10^{9}	0.000163
4×10^{10}	0.00130
1.15×10^{11}	0.00374

at the design emittance

Parasitic b.b., speed to go into collisions \& emittance increase

Parasitic beam-beam effects. Can be completely avoided up to 156 bunches.
Then gradually becoming an issue. Gain first experience on this in the 2009 / 2010 run Nominal, IP1/5 : each 30 parasitic collisions $\sim 9 \sigma$ Parasitic b.b. effects reduce with fewer bunches or increased crossing angle

Some ref.

close to head on beam-beam : peaks in blow up at 0.5 and 1.5σ
W. Herr, M. Zorzano LHC Project Report 462 ; Tatiana Pieloni thesis

Figures above from S. M. White, H. Burkhardt, S. Fartoukh, T. Pieloni, Optimization of the LHC Separation Bumps Including BeamBeam Effects WE6PFP018, PAC'09

Luminosity, general concept

general case, integrated luminosity from single collision of two bunches

$$
\mathcal{L}_{s c}=N_{1} N_{2} \int d t d^{3} \mathbf{x} \rho_{1}(\mathbf{x}, t) \rho_{2}(\mathbf{x}, t) \sqrt{\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)^{2}-\frac{\left(\mathbf{v}_{1} \times \mathbf{v}_{2}\right)^{2}}{c^{2}}}
$$

kinematic factor from C. Møller, 1945
formulas for special cases are rather straight forward to derive, see also W. Herr et al. CAS 2003 some examples given here.

For head-on collisions " $\sqrt{ }$ " $=\left|\mathrm{v}_{1}-\mathrm{v}_{2}\right| \approx 2 \mathrm{c}$, the differential luminosity can be written as :

$$
\mathcal{L}=2 f N_{1} N_{2} \int \rho_{1}\left(x, y, s_{1}\right) \rho_{2}\left(x, y, s_{2}\right) d x d y d s d(\beta c t), \text { where } s_{1}=s+\beta c t \text { and } s_{2}=s-\beta c t
$$

Event rate for process with cross section o

$$
\dot{n}=\mathcal{L} \sigma
$$

Luminosity reduction by the hourglass effect

Hourglass effect. Relevant when β^{*} is decreased close to the bunch length σ_{z} Define $\mathrm{r}=\beta^{*} / \sigma_{\mathrm{z}}$. Luminosity gets reduced. For round beams the factor is $H(r)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{e^{-s^{2}}}{1+s^{2} / r^{2}} d s=\sqrt{\pi} r e^{r^{2}} \operatorname{Erfc}(r)$

LHC values $\sigma_{z}=7.55 \mathrm{~cm}$

β^{*}	r	$H(r)$
10.	132.	0.999972
2.	26.5	0.999289
1.	13.2	0.997174
0.55	7.28	0.990833

LHC : negligible effect for $\beta^{*}>2 \mathrm{~m}$ and still small for nominal β^{*}

Luminosity with crossing angle

Factor from crossing angle in one plane (x) :

$$
S=\frac{1}{\sqrt{1+\left(\frac{\sigma_{z}}{\sigma_{x}} \tan \frac{\Phi}{2}\right)^{2}}}
$$

σ_{x} $[\mu \mathrm{~m}]$	σ_{z} $[\mathrm{~mm}]$	$\Phi / 2$	S	
59.3	0.0755	100	0.992	$3.5 \mathrm{TeV}, \beta^{*}=3.5 \mathrm{~m}$, July 2010
16.6	0.0755	142.5	0.840	$7 \mathrm{TeV}, \beta^{*}=0.55 \mathrm{~m}$, nominal

small effect

Both angle and separation : the reduction can be written as the product of three factors $\mathrm{S} \cdot \mathrm{U} \cdot \mathrm{T}$ where crossing angle

$$
S=\frac{1}{\sqrt{1+\frac{\sigma_{1 s}^{2}+\sigma_{2 x}^{2}}{\sigma_{1 y}^{2}+\sigma_{2 y}^{2}}\left(\tan \frac{\phi_{y}}{2}\right)^{2}+\frac{\sigma_{\sigma_{1}}^{2}+\sigma_{2 x}^{2}}{\sigma_{1 x}^{2}+\sigma_{2 x}^{2}}\left(\tan \frac{\phi_{x}}{2}\right)^{2}}}
$$

separation

$$
T=e^{-\frac{\delta x^{2}}{2\left(\sigma_{1 x}^{2}+\sigma_{2 x}^{2}\right)}-\frac{\delta y^{2}}{2\left(\sigma_{1 y}^{2}+\sigma_{2 y}^{2}\right)}}
$$

both

$$
U=e^{S^{2} \frac{\sigma_{1 s}^{2}+\sigma_{2 s}^{2}}{2}\left(\frac{\delta x \tan \frac{\phi_{x}}{2}}{\sigma_{1 x}^{2}+\sigma_{2 x}^{2}}+\frac{\delta y \tan \frac{\phi_{y}}{2}}{\sigma_{1 y}^{2}+\sigma_{2 y}^{2}}\right)^{2}}
$$

courtesy Simon White

Absolute Luminosity Normalization

Luminosity from bunch crossings at frequency $f=f_{\text {rev }} n_{b}$

$$
\mathcal{L}=\frac{N_{1} N_{2} f}{A}
$$

Interaction region

for Gaussian bunches with rms sizes $\sigma_{x} \sigma_{y} \quad \mathbf{A}=4 \pi \sigma_{x} \sigma_{y}$

The overlap area is directly measured in separation scans, pioneered by Simon Van der Meer @ ISR
length scale calibrated displacing both beams + vertex info from detectors

VdM Optimize IR Steering Knob Creator Analysis Database Extraction

Scan Status

Scan Finished Properly

Scan Progress

Magnets State IDLE
User Input

\square Normalize by N1*N2
\square Save Bunch Data
Start Rel. to init. Pos. [Sigma] End Rel. to init. Pos. [Sigma] Number of Measurement Points Integration Time [s]

Knob Value

Vertical Orbit [mm]

Power Converters / I_Meas [A]

10:40:001 0:50:001 1:00:001 1:1 0:001 1:20:001 1:30:00

Console
$11: 15: 53-$ IPl
$11: 152$

Example for illustration from online data sent by CMS to the CCC Showing a scan by +/- 3 nominal sigma for CMS in LHC fill 1089 2e10 protons / bunch; single colliding pair

Fits well by a double gaussian. Low background. No extended tails.
Offline analysis and discussion on the systematic errors : done by the experiments; next talk and papers at this conference
Overall uncertainty from first scans $\sim 11 \%$, dominated by the uncertainty in the intensity determination

Luminosity scans - which precision could be reached?

- the first experience from the scans (\sim two per experiment) done so far was very promising two different types of uncertainties
\bullet intensity " $\mathrm{N} 1 \times \mathrm{N} 2$ "; 3-4 \% from BCT specification JJ. Gras et al. Beam Instrum. group \bullet luminous region " $\sigma_{x} \times \sigma_{y}$ "; very clean nearly Gaussian beams, fitting very well, 3-4 \% together we can hope to get down to 5%

Is there an interest to push this further?
 What might be the ultimate precision ?

What about $\mathbf{1 \%}$ as for the ISR ? G. Carboni et al., Nucl. Phys. B 254 (1985) 697; K. Potter CAS'92
Would certainly required much more work and probably extra instruments
One idea :
Intensity normalisation by proton counting (for example with diamond detectors) when slowly scraped off : $40 \mathrm{MHz} \times 100 \mathrm{sec}=\mathbf{4 \times 1 0}{ }^{9}$ protons

Documentation of details in forthcoming PhD thesis :
Simon White, Determination of the Absolute Luminosity in the LHC; Autumn 2010
Yngve Levinsen, Study of LHC Experimental Conditions and Machine Induced Detector Backgrounds; Autumn 2011
H.B. and Per Grafstrom; Absolute Luminosity from Machine Parameters, LHC Report 1019 May 2007

IPAC2010 proceedings :
First Luminosity Scans in the LHC, MOPEC014
Beam-gas Loss Rates in the LHC, TUPEB072
Dependence of Background Rates on Beam Separation in the LHC, TUPEB073
Characterization of Interaction-Point Beam Parameters .. in the ATLAS Detector at the LHC, MOPEC008

Concluding remarks

The LHC performs very well in the early physics operation
Single beam parameters (intensity, b.b. tune shift) reached nominal parameters
The increase in single bunch intensities was rather fast and smooth
Beam-beam effects rather complex and potential limitation - some worry on triggering coherent oscillations, otherwise rather better than expected

Next : increase the number of bunches - mostly a challenge for beamprotection including beam-dump and collimation
but also : improved and tighter control of many parameters and tolerances, decrease differences between beams and bunches; identify and reduce any sources of blow up pick-up and vibrations

Optimization tools : lumi scans, tunes (and b1, b2 tune split), minimize optics errors like beta beating, transverse damper,

Backup Slides

Beam-beam kick

Gaussian beams of elliptical cross section, beam-beam deflection angle and kicks using BasettiErskine function f_{BS}

$$
\begin{gathered}
\theta_{0 \pm}=\frac{N_{\mp} e^{2}}{2 \pi \epsilon_{0} E_{ \pm}\left(\sigma_{x \mp}+\sigma_{y \mp}\right)}=\frac{2 N_{\mp} r_{c}}{\gamma_{ \pm}\left(\sigma_{x \mp}+\sigma_{y \mp}\right)} \\
\Delta x_{ \pm}^{\prime}-i \Delta y_{ \pm}^{\prime}=-\theta_{0 \pm} f_{\mathrm{BS}}\left(x_{ \pm}-\bar{x}_{\mp}, y_{ \pm}-\bar{y}_{\mp} ; \sigma_{x}^{\mp}, \sigma_{y}^{\mp}\right)
\end{gathered}
$$

Round gaussian beams, $\sigma_{x}=\sigma_{y}=\sigma_{r} \sim$ the case of the LHC

$$
\begin{aligned}
& \theta_{0}=\frac{N e^{2}}{2 \pi \epsilon_{0} E\left(\sigma_{x}+\sigma_{y}\right)}=\frac{N e^{2}}{2 \pi \epsilon_{0} E 2 \sigma_{r}}=\frac{N r_{c}}{\gamma \sigma_{r}} \\
& \Delta r^{\prime}=-\frac{N e^{2}}{2 \pi \epsilon_{0} E} \frac{1-\exp \frac{-r^{2}}{2 \sigma_{r}^{2}}}{r}=-2 \sigma_{r} \theta_{0} \frac{1-\exp \frac{-r^{2}}{2 \sigma_{r}^{2}}}{r}
\end{aligned}
$$

$60 \mu \mathrm{rad}$ LEP2, measurable, deflection scans $1.4 \mu \mathrm{rad}$ for nominal LHC parameters visible in RHIC :

A. Drees, S. White, et al. IPAC 2010

IR-bumps

two types of magnetic separation bumps :
parallel separation to avoid collisions in beam preparation, off in physics crossing angle to avoid parasitic collisions, always required for >156 bunches IR1 : horizontal separation and vertical crossing angle IR5 : vertical separation and horizontal crossing angle

orbit corrector magnets used in the IP bumps

MCBX in triplet - important for crossing angle and aperture at injection
collapse bump by combination of MCBC, MCBY and MCBX or ramp down MCBX first

Separation scans, optimization with MCBC, MCBY on one beam

Luminosity scans and absolute luminosity

(pioneered by Van der Meer @ ISR)
studied by Simon White - as PhD thesis.

$$
\frac{\mathcal{L}}{\mathcal{L}_{0}}=\exp \left[-\left(\frac{\delta x}{2 \sigma_{x}}\right)^{2}-\left(\frac{\delta y}{2 \sigma_{y}}\right)^{2}\right] \begin{gathered}
\text { gaussian } \\
\text { beams }
\end{gathered}
$$

LEP example, V-plane, 3 bunches
Exact shape extreme cases

principle : H.B. and Per Grafstrom; LHC Report 1019 from 23 May 2007 http://cdsweb.cern.ch/record/1056691 and H.B., R. Schmidt, Intensity and Luminosity after Beam Scraping, CERN-AB-2004-032

Get LHC beams colliding : BPM resolution

adjust orbits such, that the beam 1 and 2 difference left/right of the IP is the same
beams must then collide. This is independent of mechanical offsets and crossing angles

measured with special (beam-) directional strip-line couplers BPMSW, at about $\mathrm{L}=21 \mathrm{~m}$ left and right of the IP in front of Q 1 in each IR. \quad Resolution each plane $\delta_{\mathrm{IP}}=\sigma_{\mathrm{BPM}}$

Expected resolution for small separation and 0 crossing angle ; in each plane.
$\sim \mathbf{5 0} \boldsymbol{\mu m}$ using selected, paired electronics ; otherwise $\sim 100-200 \mu \mathrm{~m}$ beam 1 and beam 2 have separate electronics
$\sim \mathbf{1 0} \boldsymbol{\mu m}$ with extra BPMWF button pick-ups. Installed in $1 \& 5$, for large bunch spacing, EDMS doc 976179

Low β insertion ; LHC

the β-function in a field free region
has a form of a parabola with

$$
\beta(s)=\beta^{*}+\frac{\left(s-s_{0}\right)^{2}}{\beta^{*}}
$$

the beam size of a beam of emittance ε in a dispersion free region is

$$
\sigma=\sqrt{\beta \varepsilon}
$$

and the angular beam size divergence

$$
\sigma^{\prime}=\sqrt{\frac{\varepsilon}{\beta}}
$$

the beam size increases about linearly from the IP to the first quadrupole, by a factor s / β^{*} (for $\mathrm{s} \gg \beta^{*}$)
--> aperture limit for low β^{*}
LHC triplet aperture currently 70 mm (50 mm with screen) upgrade studies --> 130 mm aperture, NbTi

for the nominal emittance

$$
\begin{aligned}
\varepsilon_{\mathrm{N}} & =3.75 \mu \mathrm{~m}, \quad \varepsilon_{\mathrm{N}}=\varepsilon \beta \gamma \\
\varepsilon & =0.503 \mathrm{~nm} \text { at } 7 \mathrm{TeV}
\end{aligned}
$$

