Higgs production at the Tevatron: theoretical predictions and uncertainties

Julien Baglio

Laboratoire de Physique Théorique, Orsay

ICHEP 2010 - July 22nd, 2010

(J.B., A. Djouadi, arXiv:1003.4266 [hep-ph] submitted to JHEP)

Main production channels

- gluon-gluon fusion and Higgs-strahlung known at NNLO in QCD
- $t\bar{t}H$ known at NLO only
- VBF pushed partly to NNLO in 2010

(Bolzoni, Maltoni, Moch, Zaro; arXiv:1003.4451)

but considered in this talk at NLO only ($\sim 0.3\%$ difference)

12010

Higgs production at Tevatron

Julien Baglio

SM Higgs at TeVatron

Resummation in the gluon-gluon fusion channel?

Gluon-gluon fusion channel known up to Next-to-Next-to-Leading-Logarithm (NNLL)

(Catani, de Florian, Grazzini & Nason (2003)). But here not included because:

• Experimental analysis still at the NNLO

 \Rightarrow theoretical input should be (for now) at NNLO

- Cross section with cuts (and no resummation) have reduced *K*-factors
 - \Rightarrow should be seen in the NNLO scale uncertainty
- No PDF at the NNLL level until now
 - \Rightarrow calculation slightly inconsistant (Corcella & Magnea (2005))

Higher orders and scale variation $PDF+\alpha_s$ EFT at NNLO Combinaison of errors

Scale uncertainty

Higher orders (HO) guessed with μ_R, μ_F variation around central $\mu_0 = m_H$

 $\frac{m_H}{\kappa} \le \mu_R, \mu_F \le \kappa m_H$

Small HO $\Rightarrow \kappa = 2$ enough (ex. $q\bar{q} \rightarrow HV$)

Large HO in $gg \rightarrow H (K_{HO} \simeq 3)$ guess scale domain from $\sigma_{\rm NLO}$: NLO band catches $\sigma_{\rm NNLO}$ $\Rightarrow \kappa = 3$ needed (at least) according to our criterium

NNLO $gg \rightarrow H$: $\simeq 20\%$ scale variation

(\neq 10% assumed by CDF/D0)

Higher orders and scale variation $PDF+\alpha_s$ EFT at NNLO Combinaison of errors

PDF and α_s^{exp+th} errors

 $\begin{array}{l} \mbox{Different sets of PDFs on the market} \\ \Rightarrow \mbox{ differents errors on individual PDF} \\ + \mbox{ different central values} \\ \mbox{All have } \sim 5-7\% \mbox{ error, but central ABKM is} \\ \mbox{ 25\% smaller than MSTW/CTEQ } \end{array}$

Add PDF+ α_s^{exp} correlated error (MSTW dedicated set) $\Rightarrow \alpha_s(M_Z) = 0.1171 \pm 0.0034 (90\%$ CL) error

PARIS 2010

Higher orders and scale variation $PDF+\alpha_s$ EFT at NNLO Combinaison of errors

PDF and α_s^{exp+th} errors

Different sets of PDFs on the market \Rightarrow differents errors on individual PDF + different central values All have $\sim 5 - 7\%$ error, but central ABKM is 25% smaller than MSTW/CTEQ !

Add PDF+ α_s^{exp} correlated error (MSTW dedicated set) $\Rightarrow \alpha_s(M_Z) = 0.1171 \pm 0.0034$ (90%CL) error

Add $\Delta^{th} \alpha_s = 0.002$ error with central fixed- α_s MSTW PDF sets \Rightarrow ABKM is now consistent with MSTW/CTEQ

 $\sim 20\%$ final error $\gg 5\%$ PDF alone

Higher orders and scale variation PDF+ α_s EFT at NNLO Combinaison of errors

Effective theory at NNLO

NNLO: easier with $M_{\rm loop} \gg M_H$

Good for *t*-loop (Marzani *et al.* 2008, Harlander *et al.* 2009) Not for *b*-loop: $\sim 10\%$ error at NLO

 $\Delta_{\rm NNLO}^{\rm b} = \frac{\kappa_{\rm NLO}}{\kappa_{\rm NNLO}} \times \frac{\sigma_{\rm exact}^{\rm NLO} - \sigma_{\rm EFT}^{\rm NLO}}{\sigma_{\rm exact}^{\rm NLO}}$

Then add M_b uncertainty (on-shell versus $\overline{\mathrm{MS}}$)

b–loop uncertainty: $\pm 2 - 3\%$

Exact EW corrections at NLO (Actis et al. 2008) Effective theory for NNLO mixed QCD–EW, $M_H \ll M_{W,Z}$ (Anastasiou et al. 2009)

 $\Delta_{\rm NNLO}^{\rm EW} = \frac{\sigma_{\rm mixed} - \sigma_{\rm NLO~EW}}{\sigma_{\rm mixed}}$

Higher orders and scale variation PDF+ α_s EFT at NNLO Combinaison of errors

Putting together all the errors

Combining the errors: quadature or linear? CDF: 10% scale \oplus 5% PDF = 11% total error D0: 10% total error

Reasonable way: add in quadature PDF+ $\Delta^{exp+th}\alpha_s$ on $\max_{max}\sigma(\mu)$ and eventually linearly the small EW and b-loop errors $gg \rightarrow H: \sim \pm 40\% \gg \sim 10\%$ CDF/D0

 $p\bar{p} \rightarrow HV: \sim \pm 10\% > \sim 5\% \text{ CDF/D0}$

$$par{p}
ightarrow HV$$
 much more under control

Higher orders and scale variation PDF+ α_s EFT at NNLO Combinaison of errors

CDF+D0 exclusion bands?

CDF& D0: excluded $M_H \in [162 - 166]$ GeV (Phys. Rev. Lett. 104, 061803 (2010))

PARIS 2010

(日) (同) (三) (三)

Higher orders and scale variation PDF+ α_s EFT at NNLO Combinaison of errors

CDF+D0 exclusion bands?

CDF& D0: excluded $M_H \in [162 - 166]$ GeV (Phys. Rev. Lett. 104, 061803 (2010)) But with our errors:

But with our errors:

Higgs production at Tevatron

• The two most important channels have been revisited at Tevatron (minor update for the two others)

3.5

- The two most important channels have been revisited at Tevatron (minor update for the two others)
- gluon–gluon fusion has been thoroughtly studied with all uncertainties: scale, PDF, $\alpha_s^{\rm exp+th}$, EFT

- The two most important channels have been revisited at Tevatron (minor update for the two others)
- gluon–gluon fusion has been thoroughtly studied with all uncertainties: scale, PDF, $\alpha_s^{\rm exp+th}$, EFT
- Higgs-strahlung has been revisited with all major uncertainties: scale, PDF, α_s^{exp+th}

- The two most important channels have been revisited at Tevatron (minor update for the two others)
- gluon–gluon fusion has been thoroughtly studied with all uncertainties: scale, PDF, $\alpha_s^{\rm exp+th}$, EFT
- Higgs-strahlung has been revisited with all major uncertainties: scale, PDF, α^{exp+th}_s
- The overall $\simeq 40\%$ error on $gg \to H$ cross section implies that the Tevatron exclusion bands on Higgs mass should be revisited

- The two most important channels have been revisited at Tevatron (minor update for the two others)
- gluon–gluon fusion has been thoroughtly studied with all uncertainties: scale, PDF, $\alpha_s^{\rm exp+th}$, EFT
- Higgs-strahlung has been revisited with all major uncertainties: scale, PDF, α_s^{exp+th}
- The overall $\simeq 40\%$ error on $gg \to H$ cross section implies that the Tevatron exclusion bands on Higgs mass should be revisited
- Same has also been done at ℓ HC = LHC@7 TeV and 1 fb⁻¹ for gluon-gluon fusion, MSSM study under way

Backup: $gg \rightarrow H$ at the LHC@7 TeV

Combination: same exercice as at Tevatron Final error in gg \rightarrow H: $\sim -25\%$, $\sim +30\%$

much more under control than at Tevatron ($\sim-40\%,+50\%$ error).

