Results from the Final Runs of the CDMSII Experiment

Mark Kos Syracuse University

Detect energy deposited from WIMP-nucleus scattering

Discriminate between nuclear and electron recoils

CDMS: Z-sensitive Ionization and Phonon detectors

Terrestrial dark matter detection

Z. Ahmed, ¹ D. S. Akerib, ² S. Arrenberg, ¹⁷ C. N. Bailey, ² D. Balakishiyeva, ¹⁵ L. Baudis, ¹⁷ D. A. Bauer, ³ J. Beaty, ¹⁶ P. L. Brink,⁹ T. Bruch,¹⁷ R. Bunker,¹³ B. Cabrera,⁹ D. O. Caldwell,¹³ J. Cooley,⁹ P. Cushman,¹⁶ F. DeJongh,³ M.R. Dragowsky,² L. Duong,¹⁶ E. Figueroa-Feliciano,⁵ J. Filippini,^{12,1} M. Fritts,¹⁶ S.R. Golwala,¹ D.R. Grant,² J. Hal R. Hennings-Yeomans,² S. Hertel,⁵ D. Holmgren,³ L. Hsu,³ M. E. Huber,¹⁴ O. Kamaev,¹⁶ M. Kiveni,¹⁰ M. Kos,¹⁰ S. W. Leman,⁵ R. Mahapatra,¹¹ V. Mandic,¹⁶ D. Moore,¹ K. A. McCarthy,⁵ N. Mirabolfathi,¹² H. Nelson,¹³ R. W. Ogburn,^{9,1} M. Pyle,⁹ X. Qiu,¹⁶ E. Ramberg,³ W. Rau,⁶ A. Reisetter,^{7,16} T. Saab,¹⁵ B. Sadoulet,^{4,12} J. Sander,¹ R. W. Schnee,¹⁰ D. N. Seitz,¹² B. Serfass,¹² K. M. Sundqvist,¹² M. Tarka,¹⁷ G. Wang,¹ S. Yellin,^{9,13} J. Yoo,3 and B. A. Young8

(CDMS Collaboration)

¹Department of Physics, California Institute of Technology, Pasadena, California 91125, USA ²Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA ³Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA ⁴Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ⁵Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ⁶Department of Physics, Queen's University, Kingston, Ontario, Canada, K7L 3N6 ⁷Department of Physics, Saint Olaf College, Northfield, Minnesota 55057, USA ⁸Department of Physics, Santa Clara University, Santa Clara, California 95053, USA ⁹Department of Physics, Stanford University, Stanford, California 94305, USA ¹⁰Department of Physics, Syracuse University, Syracuse, New York 13244, USA ¹¹Department of Physics, Texas A&M University, College Station, Texas 93106, USA ¹²Department of Physics, University of California, Berkelev, California 94720, USA ¹³Department of Physics, University of California, Santa Barbara, California 93106, USA ¹⁴Departments of Physics and Electrical Engineering, University of Colorado Denver, Denver, Colorado 80217, USA ¹⁵Department of Physics, University of Florida, Gainesville, Florida 32611, USA ¹⁶School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA 17 Physics Institute, University of Zürich, Zürich, Switzerland (Received 5 March 2009; published 1 October 2009)

About 50 people from 15 institutions in the US, Canada, and Switzerland.

- Separate readout of phonon and charge channels
- Nuclear recoil interactions (like WIMPs) deposit most of their energy as phonons
- Electromagnetic recoils have higher charge signal

WIMP detection and background rejection

Better than 1:10000 rejection based on ionization yield

Yield based rejection

- Analysis of data runs beginning July 2007 and ending September 2008
- New data pipeline: Complete revamp of reconstruction software, migrated processing to ROOT. Processed 8TB of data in 1 month, much faster than before!
- Analysis tuned to keep expected background at <1 event

Recent Published Analysis

All cuts developed before unblinding using WIMPsearch sidebands and calibration data!

Analysis Overview

We optimized for the best sensitivity (results in < 1 expected background).

Rejection based on phonon timing is 200:1

Surface Events

Unblinding the WS data

Events failing timing cut

Events passing timing cut

The final surface event background estimate is:

$0.8\pm0.1(stat)\pm0.2(sys)$ events

The probability to observe 2 or more surface events based on the estimated background is 20%

After including the neutron background, the probability to observe 2 or more events is 23%

Likelihood analysis encourages suspicion about event in T1Z5, and reconstruction makes us suspicious of event in T3Z4

Comments about surface events

What is the probability that a true nuclear recoil in the acceptance region is as close to the cut boundaries as the candidate events are?

	3D unbinned (timing,energy, yield	2D fit (yield, timing) with fit	2D no fit (yield,timing)
Event 1 T1Z5	1%	3%	4%
Event 2 T3Z4	12%	2%	19%

Spin Independent Limit

Has been invoked by Weiner et al. to explain DAMA/LIBRA data, among other things. [Phys. Rev. D 64, 043502 (2001)]

> Scattering occurs via transition of WIMP to excited state (with mass splitting δ)

DAMA, allowed regions (at 90% C.L.) computed from χ^2 goodness-of-fit and standard truncated halo-model [JCAP 04 (2009) 010]

Inelastic dark matter

New detectors are 2.5 times thicker

Installed in Soudan and successful

engineering run Oct 2009-Dec2009

Based on backgrounds, surface discrimination, And neutron efficiency determined from the engineering run a 2yr mZIP exposure would result in a 4X improvement in sensitivity compared to CDMS II (~1X10⁻⁴⁴ cm²)

Next step: SuperCDMS mZIPs

<u>*iZIP* = i</u>nterleaved charge and phonon channels

1/3000 rejection of surface events in NR band based only on charge collection

If we include phonon timing the surface event rejection may be $\sim 10^3 - 10^6$ X better!

surface and bulk events experience different electric fields

Charge near surface is collected by electrodes on only one side

Next generation of detector design: iZIP

- Analysis of 612 (raw) kg-days of data, last of the CDMS-II data
- 2 events were observed in the signal region (0.8 surface events and < 0.1 neutrons were expected)
- We cannot interpret this result as a statistically significant signal but, within the blind analysis, we cannot exclude either event as signal
- World leading limit on spin-independent WIMP-nucleon crosssection
 3.8x10⁻⁴⁴cm² at 90% CL (for 70 GeV/c² WIMP mass)
- Successful good quality data run of first SuperTower! Next run at Soudan will be a mixture of iZIP and mZIP detectors (~10X improvement over CDMSII)

SuperTower installation

Timeline

Surface events

Phonon detection