Micromegas R&D status report

Arizona, Athens (U, NTU, Demokritos), Brookhaven, CERN, Harvard, Istanbul (Bogaziçi, Doğuş), Naples, CEA Saclay, Seattle, USTC Hefei, South Carolina, St. Petersburg, Shandong, Stony Brook, Thessaloniki

https://twiki.cern.ch/twiki/bin/view/Atlas/MuonMicromegas

Joerg Wotschack/CERN-PH

Why micromegas technology

- Robust detector that can be industrially produced
- Excellent performance (see MPGD2009, K. Nikolopoulos)
 - Very good spatial resolution
 - Timing performance sufficient for triggering
 - Potential to deliver track vectors in a single plane for track reconstruction and LV1 trigger
- Flexibility in the readout segmentation
- Excellent rate capability & ageing properties

2008: Demonstrated performance

- Safe operating point with excellent efficiency (gas gain: 3–5 x 10³)
- Superb spatial resolution has been demonstrated in test beam

 $\sigma = 35.7 \pm 2.0(stat) \pm 5.0(syst) \mu m$

Activities in 2009

- Test beam runs in H6 at CERN in Jun, Jul, Nov; combined effort with Saclay & Greek groups
 - MM performance with/out isobutane in Ar:CO₂
 - Study performance of MM with resistive coating
 - Timing performance
- Neutron beam at Demokritos
- Towards specification of front-end electronics
- Towards larger chamber size

'Old' CERN detector

New CERN detector with T2K connectors Micromegas telescope (3 xy stations)
+ résistive detector + (standard)
probe detectors.
Gassiplex readout

T2K electronics

H6 SETUP in June

Beam

A concern: discharges/sparking

- Micromegas are different from wire chambers
 - No wires to break
 - Spark rate in test beam (10–20 kHz/cm²): < 1 Hz
 - Many sparks over test beam exposure, no damage
- Sparking leads to a partial discharge of the amplification mesh => dead time during charge-up
- Different spark reduction options under study
 - Resistive coating (Saclay + CERN)
 - Mesh segmentation
 - Double step amplification (GEM + MM, MM + MM)

Tests in neutron beam 2009

- Low energy neutrons account
 for a good fraction of the
 expected counting rate in the
 muon chambers (to be
 upgraded) in ATLAS
- Two periods of data taking in the neutron beam at Demokritos Nat. Lab (Athens)
- Several chambers exposed (also TGCs)

- Response to neutrons is 20–
 30 x min. ionizing (prelim.)
- Large signals, close to spark limit (~10⁷ e⁻)

Tests with alpha particles in lab

- Alpha particles from radon decay inside the gas
- Typical energy deposit is 10–20 x deposit by neutrons (large discharge probability)
- Can gain about one order of magnitude in discharge probability by pre-amplification stage (GEM)
- Performance of MM with resistive coating when exposed to alpha particles still to be tested

Resistive coating studies

- Layer of resistive material above readout strips to reduce current during discharge
 - Resistive film (continuous) on an insulator
 - Charge spreading => good and bad, works
 - Resistive paste on strips, separated insulators
 - Difficult to control, complicated in production, failed
 - Strips on insulator through resistor to ground + capacitive coupling to readout strip
 - Simple, promising; prototype under construction, will be tested next week

To be done in 2009/10

- Try different front-end electronics and readout (T2K, TRT, BNL, ...)
 - Aim for specifications for readout electronics by spring 2010
- Continue study of spark reduction/protection
- Evaluate 1.5 x 0.5 m² prototype (test beam starts this week)
- Design of CSC-size prototype in fall 2009; to be constructed in 2010 (at CERN and possibly in industry (BNL))
 - a) Single plane (1.2 x 1.2 m²)
 - b) Chamber with several bulk micromegas for precision/trigger/2nd coordinate planes
- Start work on integration in ATLAS ...
 - Aim for a realistic layout for the ATLAS upgrade LoI in 2010

On the road to large-area detectors

- 1.5 x 0.5 m² prototype assembled yesterday
- Under gas since this morning
- Final tests in lab before test beam

Recent (last week) Activities

Spark Protection: Version 3

For 1 cell: -C= 0.026 pF -R= 10 M-ohms -RC=260 ns

SLOw Control SYstem

P1 with 560/860V @ 100kParticles.

- 5 disch/spill
- 70V drop
- I \sim 3-4uA.

R3 with 550/850V @ 100kParticles.

- 2-3 disch/spill
- 0V drop
- I \sim 20 nA.

✓ P1 with 560/860V @ 100kParticles. Constant number of discharges per spill.

✓ R3 with 570/870V @ 390kParticles. Constant number of discharges per spill and voltage drop ~ 10V.

✓ Intensity scan of R3 with discharges per spill (blue) and voltage drop (red).

Summary

- R&D so far has demonstrated:
 - excellent efficiency and spatial resolution of MMs
- Still to be shown:
 - timing performance;
 - High-rate performance + insensitivity to sparking.
- Growing interest in the community; good synergy within RD-51 Collaboration
- Next (big) step, until spring 2010:
 - Construction of full-size prototype, including demonstrator for front-end electronics + readout

Additional slides, Plans for ATLAS upgrade prototype

Towards upgrade Phase I

- Thin chambers to be added to CSCs
- Number of channels/module for 500 µm pitch:
 - 2400 x 2 = 4.8 k (precision strips)
 - O(200) strips for 2nd coordinate
 - O(1000) pads for space points
 - Total/module: 6 k channels
- 32 chambers of 1 m² with 4 active layers each (total MM area 100 m²)
- Total # of channels : 200 k

Large CSC size/shape

Module (schematic)

MICROMEGAS station

with two precision and two pad/2nd coordinate planes

Electronics

- Many chips are on the market that have some of the desired functionality, but none has all
- Phase I schedule allows for the development of new electronics
- BNL are ready to undertake a preliminary design effort (Funding request to DOE is about to be submitted as part of the US ATLAS Upgrade Effort)
- Strong interest of Saclay for common front-end electronics development (CLAS12 at Jefferson Lab); also LAPP Annecy
- CERN: demonstrator for integrated electronics using the APV25 chip as test bed for scalable r/o system (RD51 Collab.)