Physics for Health in Europe

Early events in the formation of genetic damage by heavy ions

G. Taucher-Scholz

GSI Biophysics Darmstadt

CERN, Geneva, February 2 - 4, 2010

Damage induction after heavy ion irradiation

More smaller fragments (AFM)

Psonka-Antonyzk et al. (2009) Radiat. Res.

⇒ Impaired DSB repair

Mutation Chromosomal aberration

Cancer

Hartel et al. (2009) Radiother. Oncol.

M. Krämer

Heavy ions: very localized damage response

Immunostained DNA repair proteins accumulate at damage sites

Inhomogenous microscopic dose distribution µM scale

Jakob et al. Radiat. Res. (2000)

Low angle irradiation (< 5°)

Jakob et al. Radiat. Res. (2003)

Beamline microscope : repair protein recruitment in living cells

HeLa EGFP-Aprataxin

0 to 1 min after ion irradiation

Live cell online video microscopy at the beam end

Resolution well below 1 sec

Hierarchy of recruitment
DNA-PKcs < XRCC1 < APTX
NBS1 < 53BP1

Live cell microscopy: High energy beamline

Real time protein recruitment along linear ion tracks

HZE: 1GeV/u Fe

Hela cells; XRCC1-GFP 7 min time lapse

Protein dynamics on linear ion tracks: lesion repair

HZE: 1GeV/u Fe

XRCC1-GFP SSB repair (10 min)

NBS1-GFP DSB repair (5 min)

DSBs: motion of damaged chromatin domains

Live cell imaging of DSB marker 53BP1-GFP after low angle ion irradiation in a climate chamber microscope (up to 40h)

Mean Square Displacement

Lesion processing:

- ⇒ no enhanced DSB mobility
- ⇒ no large scale rearrangements

independent on radiation type

Non-directional

(mean MSD $\sim 0.6 \, \mu \text{m}^2/\text{h}$)

GSI

Jakob et al. PNAS 2009

GSI microbeam: aimed irradiation of heterochromatin

MEF chromocenters targeted with single ions

Individual slices of stack image

IF staining: 7 min post irradiation

TOPRO XRCC1 γ-H2AX

- Early γ-H2AX within heterochromatinRelocation to the periphery
- J. Splinter et al. MS in prep.

Summary and conclusions

- Molecular basis of heavy ion cellular effects: clustered lesions and extremely localized DNA damage response
- Live cell imaging: Fast and efficient damage response (repair protein recruitment) – impaired DSB repair
- DSBs show positional stability independent of radiation type
 - no large scale rearrangements after ion impact
- Similar molecular response to photons and heavy ions different outcome due to complex lesions

Thank you!

GSI Biophysics

M. Durante

DNA Damage Research

N. Averbeck

B. Jakob

B. Meyer

F. Natale

J. Splinter Collaborators (selected)

F. Tobias M. Löbrich / C. Cardoso TU Darmstadt

C. Lukas Danish Cancer Society Copenhagen

G. Becker M. Lavin Queensland Inst. Med. Res.

A.L.Leifke D.J. Chen UT Southwest Med. Center

J. Engelhard /S. Hell DKFZ Heidelberg

GSI Heavy Ion Microbeam

