Recent results and plans in the US.

Milind Diwan Brookhaven National Laboratory

CERN EP seminar CERN, Geneva, Dec. 14, 2009

Outline

- MINOS long baseline experiment.
- Results focussed on electron neutrino appearance. And prospects.
- Quick review of θ_{13}
- Measuring CP violation in neutrino sector.
- Description of plans for a new experiment with beam from FNAL to Homestake.

Brief review of oscillations

Assume a 2×2 neutrino mixing matrix.

$$\left(\begin{array}{c}\nu_{a}\\\nu_{b}\end{array}\right) = \left(\begin{array}{c}\cos(\theta) & \sin(\theta)\\-\sin(\theta) & \cos(\theta)\end{array}\right) \left(\begin{array}{c}\nu_{1}\\\nu_{2}\end{array}\right)$$

$$\nu_a(t) = \cos(\theta)\nu_1(t) + \sin(\theta)\nu_2(t)$$

$$P(\nu_a \to \nu_b) = |\langle \nu_b | \nu_a(t) \rangle|^2$$

$$= \sin^2(\theta)\cos^2(\theta)|e^{-iE_2t} - e^{-iE_1t}|^2$$

Sufficient to understand most of the physics:

$$P(\nu_a \to \nu_b) = \sin^2 2\theta \sin^2 \frac{1.27((m_2^2 - m_1^2)/eV^2)(L/km)}{(E/GeV)}$$

$$\begin{split} P(\nu_a \to \nu_a) &= 1 - \sin^2 2\theta \sin^2 \frac{1.27 (\Delta m^2 / eV^2) (L/km)}{(E/GeV)} \\ \text{Oscillation nodes at } \pi/2, 3\pi/2, 5\pi/2, \dots \ (\pi/2): \ \Delta m^2 = 0.0025 eV^2, \\ E &= 1 GeV, \ L = 494 km \ . \end{split}$$

Sunday, December 13, 2009

Matter effect arises from a difference in interaction amplitudes between different species of neutrinos.

Charged Current for electron type only Neutral Current for all neutrino types

Additional potential for $\nu_e \ (\bar{\nu}_e)$: $\pm \sqrt{2} G_F N_e$

 N_e is electron number density.

Oscillations in presence of matter

$$i\frac{d}{dx}\nu_{f} = R_{\theta}H(\nu_{m}) + H_{mat}(\nu_{f})$$

$$i\frac{d}{dx}\begin{pmatrix}\nu_{e}\\\nu_{\mu}\end{pmatrix} = \frac{1}{4E}\begin{pmatrix}R_{\theta}\begin{pmatrix}m_{1}^{2} & 0\\ 0 & m_{2}^{2}\end{pmatrix}R_{\theta}^{T} + 2E\begin{pmatrix}\sqrt{2}G_{F}N_{e} & 0\\ 0 & -\sqrt{2}G_{F}N_{e}\end{pmatrix}\end{pmatrix}\begin{pmatrix}\nu_{e}\\\nu_{\mu}\end{pmatrix}$$
(3)

$$P_{\mu \to e} = \frac{\sin^2 2\theta}{(\cos 2\theta - a)^2 + \sin^2 2\theta} \times \sin^2 \frac{L\Delta m^2}{4E} \sqrt{(a - \cos 2\theta)^2 + \sin^2 2\theta}$$
$$a = 2\sqrt{2}EG_F N_e / \Delta m^2$$
$$\approx 7.6 \times 10^{-5} \times D / (gm/cc) \times E_\nu / GeV / (\Delta m^2 / eV^2)$$
(4)

Matter effect with 2-neutrinos

Osc. probability: 0.0025 eV^2, L= 2000 km, Theta=10deg

MINOS (Main Injector Neutrino Oscillation Search) Far

•Conventional muon neutrino beam from charged pion decays.

• Near detector is at 1.04 km from target (Fermilab) and far at 735 km (Minnesota).

•Measure spectra at near and far to search for muon neutrino disappearance or electron appearance.

Argonne • Athens • Benedictine • Brookhaven • Caltech • Cambridge • Campinas • Fermilab Harvard • Holy Cross • IIT • Indiana • Minnesota-Twin Cities • Minnesota-Duluth • Otterbein Oxford • Pittsburgh • Rutherford • Sao Paulo • South Carolina • Stanford • Sussex • Texas A&M Texas-Austin • Tufts • UCL • Warsaw • William & Mary

Horn focused muon neutrino beam

- I20 GeV protons from Main Injector
- Parabolic magnetic horns to sign select pions.
 Target can be moved to change beam energy.
- 10 µsec pulses/2.2 sec, 3.3×10¹³protons/pulse
- Beam: $v_{\mu} \sim 91.7\%$, anti- $v_{\mu} \sim 7\%$, $v_{e} \sim 1.3\%$
- V_{μ} and anti- V_{μ} measured. V_{e} constrained to ~10% with tuned Monte Carlo.

MINOS Detectors

- Massive
 - •1 kt Near detector (small fiducial)
 - •5.4 kt Far detector
- Similar as possible
 steel planes
 - •2.5 cm thick
 - •1 Muon ~ 27 planes
 - •1.4 radiation lengths
 - scintillator strips
 - •1 cm thick
 - •4.1 cm wide
 - •Molier radius ~3.7 cm
 - •Wavelength shifting fibre optic readout
 - •Multi-anode PMTs
 - •Magnetised (~1.3 T)

Sunday, December 13, 2009

MINOS Event Topologies (MC)

Analysis Challenge for ν_e

- Construct a selection algorithm to reject background and select $\, \mathcal{V}_{\,\, \mathrm{e}}$
- Measure the background spectrum in the near detector.
- Use near detector measurement to predict far detector background.
- Minimize dependence on Monte Carlo.
- Carry out blind analysis. Check background estimates with independent samples.

Selecting Ve events

- **Basic cuts** to ensure data quality:
 - Beam quality and detector quality cuts.
 - Fiducial volume cuts:
 - Cosmic rejection cuts based on steepness.
- **v**_e **preselection cuts** to reduce background.
- **v**_e selection cuts based on shower topology

Preselection requirements: Track length < 25 planes. Track like length < 16 planes. Reconstructed energy 1-8 GeV. At least one shower and 4 contiguous planes with > 0.5 MIP energy units.

Selecting v_e Events with Artificial Neural Net(ANN)

- 11 variables chosen describing length, width and shower shape
- ANN algorithm achieves:
 - signal efficiency 41%
 - •NC rejection >92.3%
 - • v_{μ} CC rejection >99.4%
 - signal/background 1:4 (chooz limit)

Primary method

 Δm^{2}_{32} =0.0024eV²

Near detector selection

• ANN selected: 5524 events/10¹⁹ POT

- LEM selected: 3528 events/10¹⁹ POT
- Background is composed of CC (with invisible muons), NC, and ve contamination in the beam.
- MC does not model the absolute background well, but the CC/NC ratios have better control. Electron neutrino Contamination well modeled.
- We also use v_{μ} charged current data with muon removed to check our background calculation. 15

Extrapolating background to FAR

ANN far \simeq 5524 (near) X 1.3 10⁻⁶ X 4000 ton/29 ton X 3.14 10²⁰ POT /10¹⁹POT

- \simeq 31 events => further corrections => 27
- LEM far ~ 3528 (near) X 1.3 10⁻⁶ X 4000 ton/29 ton X 3.14 10²⁰ POT /10¹⁹POT
 - \simeq 20 events => further corrections => 22

To get more accurate answers need to separate CC (with invis. muons) and NC backgrounds, use spectrum and account for detector differences.

CC/NC separation

5524 evts

- Minimize dependence on MC by utilizing data with horn/off spectrum
- Calculate the CC/NC fractions using MC input: ratios of CC/NC for Hon and Hoff and the beam contamination v_e in reco. energy bins.
- Statistical error from Hoff data, systematics from how well ratios are known and stable against cuts.
- Final backg numbers are: 27+- 5+-2 for ANN, and 22+-5+-3 for LEM, errors dominated by modeling of detector differences.

Muon removed showers from CC

- Allows two checks
 - Independent background calculation.
 - Complete check of analysis
 by looking at far events
 without looking at signal.

observe 39 events expect 29 +- 5(stat) +- 2(syst)

discrepancy between MRCC data and MC is very similar to the discrepancy in standard data and MC, both in shower shape and energy. We can correct the MC by this discrepancy.

	Total	NC	v _µ CC	v _T CC	v _e beam
Horn on/off	27	18.2	5.1	4.4	2.2
MRCC	28	21.1	3.6	1.1	2.2

Two methods agree 18

Muon removed electron added

- Adding the electron to the muon removed events, present good agreement in PID.
- Verification of signal selection efficiency.

• We observe a total of 159 events.

• We observe a total of 180 events.

• We expect 152±13(stat)±12(sys) events. • We expect 176±13(stat)±16(sys) events.

We model the signal well.

- At Chooz limit expectation is 6-12 events
- depending on the value of the CP phase.

Signal region examination (1) ANN (Primary Selection Method)

Observation: 35 events Expected Background: 27 +- 5(stat) +- 2(syst) events

Far Data Distributions

Allowed Region

- A Feldman-Cousins method was used
- Fit simply to the number of events from 1-8 GeV, no shape or correlation information used.
- Best fit and 90% C.L. limits are shown:
 - for both mass hierarchies
 - at MINOS best fit value for $\Delta m_{32}^2 \& \sin^2(2\theta_{23})$

• Results:

Normal hierarchy ($\delta_{CP}=0$): sin²(2 θ_{13}) < 0.29 (90% C.L.)

Inverted hierarchy $(\delta_{CP}=0)$:

```
sin<sup>2</sup>(2θ<sub>13</sub>) < 0.42 (90% C.L.)
```


Accumulated Beam Data

Future 90% CL contours 7.0 x10²⁰ POT

Future measurement if data excess persists.

Future limit if excess cancels with more data.

- •We have already doubled the data set.
- •New Analysis is almost complete. Hopefully backg will be ~50 events.
- •Signal at Chooz limit expected ~20.

Far Detector v_{μ} CC Data

- See strong energy dependent distortion of spectrum
- Prediction using near detector data.
- Energy spectrum fit with the oscillation hypothesis:

$$P(\nu_{\mu} \rightarrow \nu_{\tau}) = \sin^2(2\theta) \sin^2\left(\frac{1.27\Delta m^2 L}{E}\right)$$

 $|\Delta m^2_{32}| = (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^2$ at 68% C.L.

> $sin^{2}(2\theta_{23}) > 0.90$ at 90% C.L.

Neutral Current Analysis

- General NC analysis overview:
 - All active neutrino flavours participate in NC interaction
 - Mixing to a sterile-v will cause a deficit of NC events in Far Det.
 - Assume one sterile neutrino and that mixing between v_{μ} , v_s and v_{τ} occurs at a single Δm^2
- Survival and sterile oscillation probabilities become:

 $P(\mathbf{v}_{\mu} - \mathbf{v}_{\mu}) = 1 - \alpha_{\mu} \sin^2(1.27\Delta m^2 L/E)$ $P(\mathbf{v}_{\mu} - \mathbf{v}_s) = \alpha_s \sin^2(1.27\Delta m^2 L/E)$

• ($\alpha_{\mu,s}$ = mixing fractions)

Simultaneous fit to CC and NC energy spectra yields the fraction of v_{μ} that oscillate to v_s :

$$f_{s} = \frac{P(v_{\mu} \rightarrow v_{s})}{1 - P(v_{\mu} \rightarrow v_{\mu})} = 0.28^{+0.25}_{-0.28} (\text{stat.+syst.})$$
$$f_{s} < 0.68 \quad (90\% \text{ C.L.})$$

Far detector anti- v_{μ} CC Data (using spectrum from the 7% contamination.)

- Observe 42 events in the Far detector
- First direct observation of $\overline{\nu}_{\mu}$ in an accelerator long-baseline experiment
- Predicted events with CPT conserving oscillations:
 - 58.3 ± 7.6 (stat.) ± 3.6 (syst.)
- Predicted events with null oscillations:
 - 64.6 ± 8.0 (stat.) ± 3.9 (syst.)

Multiple Checks to make sure this is not syst. e.g. rock muons

Comparison to Global Fit

- Global fit to previous data
 - Super-Kamiokande dominates
 - Includes SK-I and SK-II data
 - M. C. Gonzalez-Garcia & Michele Maltoni, Phys. Rept. 460 (2008)
- MINOS data excludes previously allowed CPT violating regions of parameter space, particularly near maximal mixing

Results of Search for \overline{v}_{μ} Appearance

- MINOS observes no appearance of $\overline{\nu}_{\!\mu}$ in the NuMI beam
- 1-parameter fit for α using simple parameterisation

 $P(v_{\mu} \rightarrow \overline{v_{\mu}}) = \alpha \sin^2(2\theta) \sin^2\left(\frac{1.27\Delta m^2 L}{E}\right)$

(θ and Δm^2 set to CPT conserving case)

- Uncertainty from $\overline{v}_{\mu}/v_{\mu}$ cross section ratio
- Result: limit fraction, α, of events transitioning from v_µ to v_µ:
 α < 0.026 (90% C.L.)

Dedicated ⊽_µ Running

- Plan to reverse current in NuMI magnetic horns to focus π⁻ from September
 - create a \overline{v}_{μ} beam
- - rapidly reduce the uncertainty on Δm²₃₂

Fermilab Seminar, May '09

Jeff Hartnell - University of Sussex

Summary so far

- MINOS has analysed 3.2x10²⁰ POT of beam data (>6.6x10²⁰ POT data now taken)
- Muon neutrino disappearance
 - $|\Delta m_{32}^2| = (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^2$ (68% C.L.)
 - $-\sin^2(2\theta_{23}) > 0.90 (90\% \text{ C.L.})$
- Search for sterile neutrino mixing fraction
 - f_s < 0.68 (90% C.L.)
- Muon anti-neutrino disappearance: slight depletion.
 - Limit transitions v_{μ} to anti- v_{μ} : $\alpha < 0.026$ (90% C.L.)
 - Search for electron neutrino appearance $- \sin^2(2\theta_{13}) < 0.29$ (90% C.L.) (for normal mass hierarchy, $\delta_{CP}=0$)
 - Prospects are good for pushing below Chooz limit with improved analysis techniques and more data.

Global fit 0905.3549

 $\sin^2 \theta_{13} \simeq 0.016 \pm 0.010 \ (1\sigma, \text{ All Data}, 2008)$,

Figure 1: Comparison of $n-\sigma$ regions allowed by the latest (2008) solar and KamLAND data in the (δm^2 , $\sin^2 \theta_{12}$) plane, for two fixed values of θ_{13} .

Figure 4: Hints of $\theta_{13} > 0$ from different data sets and combinations: 1σ ranges.

Some early hints ?

Expected sensitivity

3 years of data

Sensitivity comparison

Fractional Flavor Content varying $\cos \delta$

$$\begin{split} \delta m_{sol}^2 &= +7.6 \times 10^{-5} \ eV^2 & \sin^2 \theta_{12} \sim 1/3 \\ |\delta m_{atm}^2| &= 2.4 \times 10^{-3} \ eV^2 & \sin^2 \theta_{23} \sim 1/2 \\ |\delta m_{sol}^2|/|\delta m_{atm}^2| &\approx 0.03 & \sin^2 \theta_{13} < 3\% \\ \\ \sqrt{\delta m_{atm}^2} &= 0.05 \ eV < \sum m_{\nu_i} < 0.5 \ eV = 10^{-6} * m_e & 0 \le \delta < 2\pi \end{split}$$

Super neutrino beam to a very large detector

Perform experiment at a L/E scale for both solar and atmospheric effects.

35

Long Baseline Neutrino Experiment (LBNE) project ? Another typical American project?

Sunday, December 13, 2009

Convergence of Interests

New scientific discoveries in neutrino physics have set the scale of the project.

Technology for an intense neutrino beam is almost ready; needs investment in SRF

The same scale detector is needed for nonaccelerator physics. Technology of the water Cherenkov detector is ready for the next step. There is impetus to get LARtpc ready also.

High Energy Physics interest comes from the linkage with GUT scale phenomena. The last mixing angle, the mass hierarchy, and CP have GUT scale implications

ATIONAL LABORATORY

Muon Neutrino Oscillation

Event rate for FNAL to Homestake

High precision $sin^2 2\theta 23$, Δm^2_{32}

- Important (esp. $\theta_{23} \sim 45$ deg.) with possibility of new physics.
- Either 120 GeV or 60 GeV beam can be used: two oscillation nodes.

39

BROOKHA

NATIONAL LABORATORY

 Measurement dominated by systematics (see hep/0407047) (~1%) **Office of**

 \star yr-2x10⁷ sec

U.S. DEPARTMENT OF ENERG

cience

Spectra FNAL to DUSEL (WBLE:wide band low energy)

• 60 GeV at odeg: CCrate: 14 per (kT*10^20 POT)

Sunday, December 13, 2009

Key Event Rate in 100kT*MW*10 ⁷						
$ u_{\mu} \rightarrow \nu_{e} \qquad 5.2e_{20} \text{ POT @ 120 GeV} $					20 GeV	
$\Delta m_{21,31}^2 = 8.6 \times 10^{-5}, 2.5 \times 10^{-3} eV^2 \sin^2 2\theta_{12,23} = 0.86, 1.0 \frac{\sin^2 2\theta_{13}}{\sin^2 2\theta_{13}} = 0.02$					$_{3} = 0.02$	
δ_{CP}					-	
	$sgn(\Delta m_{31}^2)$	o deg	+90 deg	180 deg	-90 deg	nue backg
WBLE NU (1300km)	+	87	48	95	134	17
WBLE NU (1300km)	-	39	19	51	72	4/
WBLE ANU (1300km)	+	20	27	15	7.2	- T7
WBLE ANU (1300km)	-	38	52	33	19	
U.S. DEPARTMENT OF ENER	e of ICe gy		42		BRC	OKHRVEN VAL LABORATORY

The key experimental factor

- Huge (>100kT) detector with high efficiency.
- MW class beam helps, but need the above detector first.

Detector design considerations.

• Need -100kT of fiducial mass with good efficiency. Much larger if lower efficiency. At this mass scale cosmic ray rate becomes the driving issue for detector placement and design.

 $\sin^2 2\theta_{13} = 0.02$ signal-50 evts/yr

Event type	100 kTon	100 kTon	
Proton Beam Energy	120 GeV	60 GeV	
Angle	0.50	00	
$CC v_{\mu}$	27000	45000	
No Oscillations			
$CC v_{\mu}$	11400	21000	
With Oscillations			

Rate(Hz)	Depth (mwe)	
500 kHz	5×10^7	0
3 kHz	300,000	265
400 Hz	40,000	880
5 Hz	500	2300
1.3 Hz	130	2960
0.60 Hz	60	3490
0.26 Hz	26	3620
0.09 Hz	DUSEL depth 9	4290

Ref: BNL-81896-2008

Cosmic rate in 50m h/dia detector in 10 μ for 107 pulses

If detector is placed on the surface it must have cosmic rejection for muons $\sim 10^8$ and for gammas ~ 10 beyond accelerator timing.=> fully active fine grained detector.

Next key Experimental factor

- Detector of 100 kTon scale needs to be at least at 1000 mwe; even for accelerator physics.
- A very fine grained detector such as LARtpc could be shallower, but needs thorough examination and experience.
- In any case, the shallow will means loss of non-accelerator science. Shallow need not mean less expensive after fiducial volume loss.
- The scientific judgement behind placing such a facility at any depth needs debate.

Far Detector : Water Cerenkov

Super-K

- 13K 20" PMT
- 40% coverage
- 50 kT total mass
- 39 m diameter
- 42 m height

LBNE

- 60 K 10" PMT per 100kT FV module (25%)
- ~55 m diameter
- ~60 m height

🛟 Fermilab

Liquid-Argon Time Projection Chambers

Outlook of R&D Program in the US

•Long baseline accelerator neutrino physics is the ideal application for LARTPC.

• The key idea is to use all charged current rate and obtain high efficiency with low background.

•Technological problem: can we scale current detectors to much higher masses while reducing cost.

Yale TPC & Bo Yale TPC: Dismantled Bo: Operational		0.00002 kton
ArgoNeuT Operational Physics: Measure neutrino-argon cross sections		0.0003 kton
MicroBooNE Construction begins 2010 Physics: Investigate low-energy neutrino interactions ICARUS ~300t0	s 1	0.1 kton
LAr TPC for LBNE R&D in progress Physics: Measure neutrino oscillations at 1,000+ km		20 kton
Final goal Replicate proven technology Physics: Search for CP violation in neutrino sector		N x 20 kton

Electron neutrino appearance spectra $\sin^2 2\theta_{13} = 0.04$, 100kT LAr., WBLE 120 GeV, 1300km, 30E20 POT. $(-\delta_{cp} = -45^\circ, -\delta_{cp} = +45^\circ)$ Normal Reversed v running, 1300km, 30 10²⁰ PoT signal + background: 45 v running, 1300km, 30 10²⁰ PoT 2 8 160 signal + background: $\Delta m_{21,31}^2 = 8.6 \ 10^{-5}, +2.7 \ 10^{-3} \ eV^2$ LAR assumptions − ໂ_ຍ≓+45`(1380.5 evtsb $\Delta m_{31,51}^2 = 8.6 \ 10^{-5}, +2.7 \ 10^{-3} \ eV^2$ δ.=+45'(534.2 evts) Events/0.25 140 sin² 28_(12,23,13) = 0.86, 1.00, 0.04 **40**b δ.= +0 (1321.4 evts) $\sin^2 2\theta_{112,23,13} = 0.86, 1.00, 0.04$ δ...= +0 (499.7 evts) —____δ__=-45 °(1562.3 evts) δ_c.=-45 '(454.0 evts) 35ł •80% efficiency on background background all (457.7 evts) all (245.6 evts) 30ŀ beam 🖕 (451.7 evts) beam 😼 (242.5 evts) electron neutrino CC 100[|] 25L 80 events. neutrino neutrino 20**⊨** 60¹ 15b •sig(E)/E = 5%/sqrt(E) on **40** 10 quasielastics 20F •sig(E)/E = 20%/sqrt(E) on Events/0.25 GeV v running, 1300km, 30 10²⁰ PoT √ running, 1300km, 30 10²⁰ PoT signal + background: signal + background: **80** $\Delta m_{21,31}^2 = 8.6 \ 10^{-5}, -2.7 \ 10^{-3} \ eV^2$ $\Delta m_{21,31}^2 = 8.6 \ 10^{-5}, -2.7 \ 10^{-3} \ eV^2$ δ.=+45'(725.0 evts) δ_{ef}=+45°(731.7 evts) other CC events sin² 28_(12,23,13) = 0.86, 1.00, 0.04 $sin^2 2\theta_{(12,23,13)} = 0.86, 1.00, 0.04$ ô_.≓ +0°(858.3 evts) 70 δ_{cF} +0 *(661.0 evts) δ.=-45 (1011.9 evts) δ. = -45 '(578.4 evts) background background all (464.3 evts) all (243.5 evts) 🔆 beam 🙀 (458.3 evts) - beam 🖕 (240.4 evts) 50ł 50ŀ antineutrin Spectra and sensitivity is antineutrino **40**E the work of M. Bishai, **30** 301 Mark Dierckxsens, 20ľ 20 Patrick Huber + many 10 helpers neutrino energy [GeV] neutrino energy [GeV]

LBNE beam optimization

Further science issues

- Program should lead to measurement of 3-generation parameters without ambiguities. (recall: CP measurement is approximately independent of θ_{13}). Need large detector independent of θ_{13} value.
- A broad band beam is needed to get spectral information to resolve ambiguities. Spectrum down to 0.5 GeV important.

51

2.3 MW

300 kT water Cherenkov detector @DUSEL Measurement of CP phase and Sin²2θ13 at several points. All ambiguities and mass hierarchy are resolved.

CP Fraction: Fraction of the CP phase (0-2pi) covered at a particular confidence level.

Report the value of th I 3 at the 50% CP fraction.

NSF site decision on advice from a 22 member unanimous panel.

M.Diwan

- South Dakota is West of Minnesota (take I-90)
- Black hills are stunning.

M.Diwan

54

Sunday, December 13, 2009

MEGATON MODULAR MULTI-PURPOSE NEUTRINO DETECTOR

MEGATON MODULAR MULTI-PURPOSE NEUTRINO DETECTOR

Chamber Design

Large Cavity, Water Cherenkov Detector Calibration Drift Concept

LONGSECTION OF THE HOMESTAKE MINE

Large Cavities, Water Cherenkov Detectors, Plan View Calibration Drift Concept

LONGSECTION OF THE HOMESTAKE MINE

Large Cavities, Water Cherenkov Detectors Calibration Drift Concept

LONGSECTION OF THE HOMESTAKE MINE

Homestake DUSEL

PMT R&D

- Issues are: making 150000 tubes in 6 years time, their efficiency, and their pressure performance.
- If PMTs can stand higher pressure, the cavern can be taller => more fiducial volume.
- Have had meetings with Photonis and Hamamatsu: no barrier to PMT production except money.

Typical PMT production

- Needs 35 people and ~30000-40000 ft2 space.
- With above annual production can be 20000 per year of 10-12 inch PMTs.
- Potential bottlenecks are glass production, and testing on the experiment's end.
- New High quantum efficiency technology is becoming standard.

HAMAMATSU

Status

- Project is big, and must follow big-project-procedure. This can be fast: e.g. NSLS-2 (~\$1 b) at BNL went from CD0 to CD2 in 3 yrs.
- Mission Need Doc for CD0 is prepared and is under review in DOE.
- Project Management teams at FNAL and BNL are being staffed.
- A plan for developing CD1 docs has been developed and handed over to DOE. LBNE doc 26-v2.
- \$15 ARRA funds is going to LBNE to speed up CD0 to CD1 process. Total of about \$28M. Currently \$7-8M at BNL.
- CDI review at end of FY2010, reviews every 6 moths.
- Science collaboration funded from NSF S4 and some DOE supplements.

Conclusion

- A 300kT and 50kT of LAR detector at a good depth is well justified for accelerator neutrino physics.
- If built in the USA it has unique physics capability in the world due the length of the baseline.
- Excellent sensitivity for θ_{13} and mass ordering and CP violation.
- Proton Decay and Supernova astrophysics ranks very high.
- The caverns built could house different technology: better PMTs, Liquid Scintillator, Liquid X...

LBNE references

Documents	Workshops and reviews	
NNN99 proceedings, editors C.K. Jung and M. Diwan Extra longbaseline, W.Marciano, arXiv:hep-ph/0108181,Aug2001 D. Beavis, et al., hep-ex/0205040, 2002 Very longbaseline, M. Diwan, et al., BNL69395, hep-ex/0211001 Megaton Modulardetector, M. Diwan, hep-ex/0306053, 2003 Int. J. Mod. Phys. A18:4039,2003 Phys. Rev. D 68: 012002,2003	NNN99, NUSL workshop in Lead Oct2001, NESS2002, StonyBrook 2002, HQL2004 Presentation to SAGENAP, March 12, 2002	
The AGS based superneu, Alessi et al., BNL-73210-2004-IR,2004	PAC2003, NuFACT05, FNAL proton driver workshop 2004	
The case for a superneu, M.Diwan, hep-ph/0407047	APS multi-divisional study: Joint BNL/UCLA/APS workshop,	
Spectrum,S.Kahn, PAC-2005-RPPT059, 2005.	Snowmass2004,	
FNAL Proton driver, hep-ex/0509019	BNL/UCLA workshop 2004, 2005.	
Neutrino Matrix Report, 2004.	PAC2005	
Backg. study,Yanagisawa et al.,AIP conf. proc. 944:92-106, 2007.	HEPAP Future Facilities Subcommittee, Feb. 2003	
Preliminary cost & design, BNL-76798-2006-IR, hep-ex/0608023	NNN series of workshops, NUFACT workshops,	
US longbaseline study, FNAL-0801,BNL-77973,arXiv:0705.4396	UDIG 2008 workshop,	
NSF Homestake S1, S2, S3 proposals.	DUSEL workshops, US long baseline study meetings,	
NSF S4 proposal for detector development.	Homestake PAC, 2006, BNL PAC 2006	
Report on depth, BNL-81896-IR, FNAL-TM-2424, LBNL-1348E	NUSAG, 2006, HEPAP 2006, 2007	
http://nwg.phy.bnl.gov/fnal-bnl	P5 committee Feb, 2008	

•Genesis: Detector needs a neutrino beam, but what distance ? Why bother with longer distances than the first maximum ? 67

Selecting v_e events with Library Event Matching (LEM)

(fraction of electron neutrino events in 50 best matches)

- Select 50 best matches according to the likelihood that two events have the same hit pattern in position and energy deposition. Use large MC library.
- Construct discriminant variables from the properties of the 50 best matches, eg. fraction of the 50 best matches that are v_e CC.
- Build a likelihood from 3 variables as function of energy.

Secondary method (systematics need checking)

With a cut of LEM>0.65:

signal efficiency 46% NC rejection >92.9% CC rejection >99.3% signal/background 1:3

Signal region examination (2) LEM (Secondary Selection Method)

Observation: 28 events Expected Background: 22 +- 5(stat) +- 3(syst) events

Nucleon decay

- e-Pi0 mode: Current limit >8X10³³ yr with 141 kTon-yr (SK) with Bkg estimate: 2.1/Mton-yr
- e-pi0 with 300kTon*10yrs => ~8X10³⁴ yrs
- K-nu mode: Current limit >3X10³³ yrs with 141 kTon-yr (SK) with Bkg estimate: 1.7/Mton-yr
- K-nu with 300kTon*10yrs => ~10³⁴ yr
- With LAR the limit on K-nu could be much better because of much higher efficiency. We should do a detailed examination ourselves.

(300kT) will hit backg. in ~2yrs. It could be important to perform this first step before building bigger.

M.Diwan

Astrophysical Neutrinos Event rates. (100kT)

- Atmospheric Nus: ~10000/yr muon, ~5000/yr electrons. (Ref: Kajita nnn05)
- Solar Nus: >120000 elastic scattering E>5MeV (including Osc.)
- Galactic Supernova: ~100000/10 sec in all channels. (~3000 elastic events). (Ref: uno)
- Relic Supernova: (ref:Ando nnn05)
 - flux: ~5 (1.1) /cm2/sec Enu>10 (19) MeV
 - rate: 150 (70) events over backg ~200 !

There are detailed numbers for water and LAR in the depth requirements document

M.Diwan

NATIONAL LABORATORY