## **VECTORS and SUBMICRON PRECISION: REDUNDANCY and 3D STACKING IN SILICON PIXEL DETECTORS**

Erik H.M. HEIJNE IEAP/CTU Prague & CERN CH1211 Geneva 23











WIT2010, LBL Berkeley, 3-5 February 2010



Erik HEIJNE IEAP/CTU & CERN PH Dep

## VECTORS and SUBMICRON PRECISION: REDUNDANCY and 3D STACKING IN SILICON PIXEL DETECTORS

Erik H.M. HEIJNE IEAP/CTU Prague & CERN CH1211 Geneva 23

with:







Jan JAKUBEK, Stanislav POSPISIL, Daniel TURECEK and Zdenek VYKYDAL IEAP / CZECH TECHN UNIV. Prague, CZ 12800 Rafael BALLABRIGA, Michael CAMPBELL, Xavi LLOPART, Richard PLACKETT, Lukas TLUSTOS and Winnie WONG CERN CH 1211 Geneva 23 Daan BOLTJE, Jos VERMEULEN and Jan VISSCHERS NIKHEF, Science Park, Amsterdam



WIT2010, LBL Berkeley, 3-5 February 2010



Erik HEIJNE IEAP/CTU & CERN PH Dep

Si STACK in 3 DIMENSIONS PATTERN RECOGNITION SPACE VECTORS DELTA RAY CORRUPTION SUBMICRON PRECISION MICRO --> NANO ELECTRONICS



Erik HEIJNE IEAP/CTU & CERN PH Dep



# **THIN DETECTOR LAYERS**

# **BUT MANY MORE THAN USUAL**





# THIN DETECTOR LAYERS 55 um Si BUT MANY MORE THAN USUAL

## HIGHLY REDUNDANT DETECTOR

## **EXPLORATION of DIFFERENT APPROACH**

#### VECTOR DETECTOR, STACKING ELIMINATES AMBIGUITIES, SUB-MICRON POSITION INFORMATION, ENERGY INFORMATION & DELTA-RAY CORRUPTION





## **MEDIPIX / TIMEPIX USB** OPERATED and POWERED from PORTABLE COMPUTER

### PIXELMAN SOFTWARE PRAGUE IEAP - CTU







## **MEDIPIX / TIMEPIX USB** OPERATED and POWERED from PORTABLE COMPUTER

## RECENT PLANS: TALK by Xavi LLOPART

## PIXELMAN SOFTWARE PRAGUE IEAP - CTU



soon: USB2 ETHERNET





Erik HEIJNE IEAP/CTU & CERN PH Dep

## SETUP in H6 BEAM CERN



r.



8

## H6 BEAM CERN 120 GeV PIONS - MUONS



## MEDIPIX as HEP PARTICLE DETECTOR 120 GeV PIONS



## CERN H6 beam 120 GeV PIONS : Si EMULSION ?



SILICON PIXEL ASSEMBLY 256x256 55um pixels **EXPOSURE TIME 50 ms** 

**BEAM HODOSCOPE** & TARGET & DETECTOR

14.08 mm

256 pixels



# FRONT-BACK AMBIGUITY can be SOLVED BY STACKED SENSOR LAYERS

# UNAMBIGUOUS 3D VECTORS INSTEAD of SPACE POINTS



Erik HEIJNE IEAP/CTU & CERN PH Dep



# BEAM GRAZING THROUGH STACK

M.I.P. TYPICALLY DEPOSITS 200 - 300 eV per um Si 11- 16.5 keV in 55um PIXEL --> 3400 e-COMPARE with 1mm Ar --> 1-10 e-







## FIRST 2-PLANE MEDIPIX STACK



# **2 FRAMES BACK-to-BACK**



WIT2010 LBL, 2-5 February 2010









## FRAME 218 4 MUONS E flipped





















![](_page_19_Picture_2.jpeg)

![](_page_19_Picture_5.jpeg)

![](_page_20_Picture_1.jpeg)

![](_page_20_Picture_2.jpeg)

![](_page_20_Picture_5.jpeg)

![](_page_21_Picture_1.jpeg)

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_5.jpeg)

![](_page_22_Picture_1.jpeg)

![](_page_22_Picture_2.jpeg)

**SUPERIMPOSED** 

![](_page_22_Picture_4.jpeg)

Erik HEIJNE IEAP/CTU & CERN PH Dep WIT2010 LBL, 3-5 February 2010

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_3.jpeg)

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_2.jpeg)

Ε

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

WIT2010 LBL, 3-5 February 2010

E flipped

![](_page_26_Picture_1.jpeg)

![](_page_26_Picture_2.jpeg)

Erik HEIJNE IEAP/CTU & CERN PH Dep

WIT2010 LBL, 3-5 February 2010

E flipped

CERN

![](_page_27_Picture_1.jpeg)

![](_page_27_Picture_2.jpeg)

WIT2010 LBL, 3-5 February 2010

E flipped

28 CERN

![](_page_28_Picture_1.jpeg)

![](_page_28_Picture_2.jpeg)

WIT2010 LBL, 3-5 February 2010

E flipped

29 CERN

![](_page_29_Picture_1.jpeg)

![](_page_29_Picture_2.jpeg)

WIT2010 LBL, 3-5 February 2010

CERN

# **INTERACTION in Cu FOIL**

![](_page_30_Picture_1.jpeg)

WIT2010 LBL, 2-5 February 2010

![](_page_30_Picture_4.jpeg)

![](_page_31_Figure_0.jpeg)

![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_2.jpeg)

![](_page_32_Figure_0.jpeg)

![](_page_32_Picture_1.jpeg)

![](_page_32_Picture_4.jpeg)

![](_page_33_Figure_0.jpeg)

# ANALOG PIXEL DATA & DELTA RAY CORRUPTION

![](_page_34_Picture_1.jpeg)

Erik HEIJNE IEAP/CTU & CERN PH Dep

WIT2010 LBL, 2-5 February 2010

![](_page_34_Picture_4.jpeg)

![](_page_35_Figure_0.jpeg)

![](_page_36_Figure_0.jpeg)

## TRAIL ANALYSIS FRAME 29853

![](_page_37_Figure_1.jpeg)

#### SHOWS 4 ENERGETIC DELTA $\delta$ e- TRANSFERS EVEN IF THESE **REMAIN WITHIN THE PIXEL**

SOMETIMES SUCH ENERGETIC ELECTRONS TRAVEL

THROUGH SEVERAL PIXELS

![](_page_37_Picture_5.jpeg)

Erik HEIJNE IEAP/CTU & CERN PH Dep WIT2010 LBL, 2-5 February 2010

![](_page_37_Picture_8.jpeg)

## **TRAIL ANALYSIS FRAME 29853**

![](_page_38_Figure_1.jpeg)

**TYPICAL "LANDAU" DISTRIBUTION** 

![](_page_38_Picture_3.jpeg)

![](_page_38_Picture_6.jpeg)

## PIXEL CALIBRATION TOT (1,1)

![](_page_39_Figure_1.jpeg)

![](_page_40_Picture_0.jpeg)

## **TYPICAL TRAILS ...**

![](_page_40_Figure_2.jpeg)

![](_page_40_Figure_3.jpeg)

![](_page_41_Picture_0.jpeg)

![](_page_41_Picture_1.jpeg)

![](_page_41_Figure_2.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_42_Figure_3.jpeg)

![](_page_42_Figure_4.jpeg)

![](_page_42_Figure_5.jpeg)

![](_page_42_Picture_6.jpeg)

![](_page_42_Picture_9.jpeg)

# **DELTA ELECTRON OCCURRENCE**

PIXEL EXTENSION

## CORRUPTED PIXEL >55 $\mu$ m OFF-TRAJECTORY

PROBABLY

| FRAMES<br># | TRAILS<br># | LENGTH<br>mm Si | 1   | 2-5 | ≥6 | mm / EVENT | 300 <i>µ</i> m Si |  |
|-------------|-------------|-----------------|-----|-----|----|------------|-------------------|--|
| 15          | 54          | 315             | 98  | 11  | 7  | 2.7 mm     | 1 on 9            |  |
| 16          | 49          | 334             | 119 | 24  | 18 | 2.1 mm     | 1 on 7            |  |
| 17          | 52          | 326             | 120 | 21  | 7  | 2.2 mm     | 1 on 7            |  |

## 3 SIMILAR DATASETS, SAME PIXEL THRESHOLD

![](_page_43_Picture_5.jpeg)

![](_page_43_Picture_8.jpeg)

![](_page_44_Figure_0.jpeg)

![](_page_45_Figure_0.jpeg)

![](_page_46_Figure_0.jpeg)

# **MUONS from π, K DECAY**

## ANALYSIS with MEDIPIX only already SHOW SUBMICRON PRECISION

![](_page_47_Picture_2.jpeg)

Erik HEIJNE IEAP/CTU & CERN PH Dep

![](_page_47_Picture_5.jpeg)

## H6 120 GeV MUONS : REDUNDANCY -> PRECISION

![](_page_48_Figure_1.jpeg)

![](_page_48_Picture_2.jpeg)

WIT2010 LBL, 2-5 February 2010

Parallel Medipix M-01-0013

![](_page_48_Picture_5.jpeg)

## CHARGE COLLECTION & LATERAL DIFFUSION

![](_page_49_Figure_1.jpeg)

# DIFFUSION width of CARRIERS is shown EXAGGERATED

![](_page_49_Picture_3.jpeg)

WIT2010 LBL, 2-5 February 2010

![](_page_49_Picture_6.jpeg)

## **EXCELLENT RECONSTRUCTION PRECISION**

![](_page_50_Figure_1.jpeg)

SEQUENCE of DOUBLE HITS ---> PRECISE ROW TRANSITION POINTS CONSTRAIN TRAJECTORY in the MIDDLE to ~ 0.05  $\mu$ m on VERTICAL

![](_page_50_Picture_3.jpeg)

Erik HEIJNE IEAP/CTU & CERN PH Dep

Parallel Medipix M-01-0013

![](_page_50_Picture_6.jpeg)

## **PRECISION : AUTO - RESIDUALS**

![](_page_51_Figure_1.jpeg)

![](_page_51_Picture_2.jpeg)

![](_page_51_Picture_5.jpeg)

## **IMPROVING VERTEX TRACKING DETECTORS**

## **COPING with SLHC DENSITY & EVENT RATE** INVESTIGATE DIFFERENT APPROACHES

#### DETERMINE QUICKLY THE RELEVANT PRIMARY VERTEX REDUCE AMBIGUITIES IMPROVE PATTERN RECOGNITION

## **VECTOR COORDINATES for TRAILS**

### **USE MANY MORE POINTS ON TRAIL**

## **RESPECT LIMITATIONS on POWER & COST**

![](_page_52_Picture_6.jpeg)

![](_page_52_Picture_9.jpeg)

# MICRO -> NANO ELECTRONICS

![](_page_53_Picture_1.jpeg)

WIT2010 LBL, 2-5 February 2010

![](_page_53_Picture_4.jpeg)

## NEW APPLICATIONS NEED MORE ADVANCED nm CMOS

## INTEL : IMPROVED LITHOGRAPHY in 45 nm

## MINIMAL SRAM CELL

ALSO, SEVERAL CHARACTERISTICS IMPROVED BEYOND EXPECTATIONS

90 nm

#### 65 nm

45 nm

![](_page_54_Picture_7.jpeg)

![](_page_54_Picture_8.jpeg)

![](_page_54_Picture_9.jpeg)

#### ~ TO SCALE

#### Mrs Kelin KUHN, IEEE IEDM 2007

![](_page_54_Picture_12.jpeg)

![](_page_54_Picture_13.jpeg)

Erik HEIJNE IEAP/CTU & CERN PH Dep

## 45 nm INTEL : LESS VARIABILITY

![](_page_55_Figure_1.jpeg)

![](_page_55_Picture_2.jpeg)

Fig.5. 65nm and 45nm transistor variation, additional benefit of a Erik HEIJNE IEAP/CTU & CE fully-depleted geometry such as Trigate

## PROGRESS in Si SENSORS HAND-in-HAND with AVAILABLE INDUSTRIAL TECHNOLOGY

| SINGLE D | IODE                                                                      | 1955                                                                                                                                           |
|----------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| SEGMENT  | ED DIODE mm                                                               | 1960                                                                                                                                           |
| DOUBLE-S | SIDED STRIPS                                                              | 1965                                                                                                                                           |
| CCD/MOS  | MATRIX                                                                    | 1971                                                                                                                                           |
| PIXELS   | MONOLITHIC or HYBRID                                                      | 1989                                                                                                                                           |
| PILLARS  | '3D'                                                                      | 1998                                                                                                                                           |
| VOXELS   | next step                                                                 | ?                                                                                                                                              |
|          | SINGLE D<br>SEGMENT<br>DOUBLE-S<br>CCD/MOS<br>PIXELS<br>PILLARS<br>VOXELS | SINGLE DIODE<br>SEGMENTED DIODE mm<br>DOUBLE-SIDED STRIPS<br>CCD/MOS MATRIX<br>PIXELS MONOLITHIC OF HYBRID<br>PILLARS '3D'<br>VOXELS next step |

![](_page_56_Picture_2.jpeg)

**DEMONSTRATION of Si VECTOR DETECTOR** HIGHLY REDUNDANT TRAILS with SMALL VOXELS PRECISE SPACE VECTOR instead of FEW SPACE POINTS **RESOLVE DIRECTIONAL AMBIGUITIES in PROJECTIONS** EXCLUDE CORRUPT MEASUREMENT POINTS (DELTA e-) TRACKING PRECISION < 1 um USING ~20-40 pixels 

![](_page_57_Picture_1.jpeg)

![](_page_57_Picture_4.jpeg)

![](_page_58_Picture_0.jpeg)

![](_page_58_Picture_1.jpeg)

![](_page_58_Picture_4.jpeg)

![](_page_59_Figure_0.jpeg)

## OPERATION in H6 BEAM CERN CAN BE REAL EASY

![](_page_60_Picture_1.jpeg)

![](_page_60_Picture_2.jpeg)

![](_page_60_Picture_3.jpeg)

Erik HEIJNE IEAP/CTU & CERN PH Dep

WIT2010 LBL, 2-5 February 2010

![](_page_60_Picture_6.jpeg)

## SOME POTENTIAL APPLICATIONS

## **ACTIVE Si TARGETS**

INTEREST 1985-1995 BUT: EXPLOIT FIXED TARGET BEAMS in FUTURE 'CENTRAL' DETECTOR at NEUTRINO FACTORY

## **CALORIMETER PRE-SHOWER**

HIGH PRECISION ENTRY SHELL PARTICLE RECOGNITION by PATTERN

**PARTICLE IDENTIFICATION**  $p,\pi,K,e^{-},\mu$ NEEDS ANALOG SIGNAL --> TIMEPIX CHIP MANY SAMPLES ARE POSSIBLE

![](_page_61_Picture_6.jpeg)

Erik HEIJNE IEAP/CTU & CERN PH Dep

![](_page_61_Picture_9.jpeg)

## COMPARE EMULSION with MEDIPIX 55um x 55um x 300um PIXELS

![](_page_62_Figure_1.jpeg)

![](_page_62_Picture_2.jpeg)

#### FAIRLY LARGE BACKGROUND NOISE in EMULSION

![](_page_62_Picture_4.jpeg)

Erik HEIJNE IEAP/CTU & CERN PH Dep