A First Level Track Trigger for Atlas at Super-LHC

Physikalisches Institut University of Heidelberg

Super-LHC: The LHC is not enough

- What LHC will discover is unknown, but:
 - Properties of potentially new particles (e.g. Higgs couplings) need to be exactly measured (no ILC soon)
 - New heavy particles like e.g. Z' can only be seen with enough statistics
 - More statistics gives also better exclusion limits

Super-LHC and Atlas

• SLHC

- Plan: 10 times LHC luminosity, keep 14 TeV cms
- Exploit full pp collider physics potential
- Error halfing time becomes soon too large

Atlas Upgrade

- Design life time of certain part reached after 10 years due to radiation damage
- Replace inner detector completely by all silicon tracker
- Improvements of muon and calorimeter system
- Trigger system must be adapted for higher rates

Track Trigger for Atlas - WIT2010

New Inner Detector

- Different designs under study
- No Transition Radiation
 Detector anymore
- Possible layout:
 - Volume up to solenoid filled with silicon layers
 - Pixel: 50 µm x 250 µm
 - Short and long strips:
 75 µm x 2.4 cm (10 cm)

Our Reference Design

Track Trigger for Atlas - WIT2010

Trigger Upgrade

Current Design

- L1 Trigger decision based on jets and leptons (calorimeter, muon system)
- Lepton ID using central tracking information at level 2

• Problem:

- Higher rate at SLHC -> higher L1 fake rate
- Need better lepton ID at L1 or increase L1 bandwidth

Approaches to include Tracking

- Regional Readout + Regional Track Trigger (L1 - L2)
- Early Regional L2 Track Trigger (FTK processor)
- Fast Track Trigger (L1) Track Trigger for Atlas - WIT2010

Requirements Fast Track Trigger

- Should work on Level 1
- Latency below 1 µs
- Must be fully pipelined \rightarrow no dead time
- Reconstruction of all tracks with pT > 10 GeV
 - \rightarrow Possible solution: use lookups only

In contrast to FTK processor which combines lookup and fitting techniques.

Lookup Technique

- Event described by a pattern of hits
- Lookup template ("valid" or "false") using the pattern as address identifier:

 $addr = \sum 2^{integer \, identifier \, of \, hit}$

Problem:

> 100 millions of identifiers

→ Not possible to address all possible outcomes by a single lookup

Track Trigger for Atlas - WIT2010

Definitions:

- Hit: signaled cell or channel
- Pattern: pattern of signals in all channels
- Combination: combination of hits between layers
- Template: combination belonging to a valid track

ern

Smart Lookup

- **Problem: Too many valid patterns** \bullet
- Solution: Ignore not important hit combinations
- **Possible implementation: Ternary CAM ("Don't Care bits")**
- **Content Addressable Memory (CAM)**
 - Offers storage and in-built compare ullet
 - Input patterns are compared simultaneously against all stored templates ullet

CAM 01XX e.g. internet routers 10X11XX 100

X = don't care

- Available as •
 - discrete CAM (e.g. Network Search Engine) 64k x 586 bit —
 - embedded FPGA 10k x 64 bit

Track Trigger for Atlas - WIT2010

Smart Lookup

- Problem: Too many valid patterns
- Solution: Ignore not important hit combinations
- Possible implementation: Ternary CAM ("Don't Care bits")
- Content Addressable Memory (CAM)
 - Offers storage and in-built compare
 - Input patterns are compared simultaneously against all stored templates

- Available as
 - discrete CAM (e.g. Network Search Engine) 64k x 586 bit
 - embedded FPGA 10k x 64 bit

Track Trigger for Atlas - WIT2010

Smart Lookup

- Problem: Too many valid patterns
- Solution: Ignore not important hit combinations
- Possible implementation: Ternary CAM ("Don't Care bits")
- Content Addressable Memory (CAM)
 - Offers storage and in-built compare
 - Input patterns are compared simultaneously against all stored templates

- Available as
 - discrete CAM (e.g. Network Search Engine) 64k x 586 bit
 - embedded FPGA 10k x 64 bit

Track Trigger for Atlas - WIT2010

Hardware Implementation

currently available circuits:

	Pros	Cons
discrete CAM ⁶ Netlogic	 lots of memory and large input bandwidths 	slow multiple matchesprice
FPGA Alterate	 embedded CAM flexible, integration 	smaller memoryprice
ASIC	 associated memory chip, specialized and optimized design e.g. AM chip (FTK) 	 smaller memory speed

Track Trigger based on CAMs

Procedure

- Compare patterns in strips or pixels with precomputed templates
- Templates are stored in Ternary-CAMs providing storage and compare functionality
- Every part of the detector is special, no symmetry exploited

Main questions

- How many templates needed depending on detector geometry?
- Fake rate?
- Hardware implementation?

X = don't care

How many templates?

- Toy MC and reconstruction tailored for templates studies
- Factorize transverse x-y and longitudinal r-z plane
- Total number of templates:

$$N_{tot} = N_{trans} * N_{long}$$

Track Trigger for Atlas - WIT2010

Studied Layouts

- Reference Design 3 5 layers
- Either hits in all layers or one layer allowed to be inefficient
- Consider barrel only
- Trade-off:
 - Fake rate vs. #templates
 - Track Trigger only fake rate < 100 tracks considered to be useful (for matches with calo and muon system)
 - 100 billion templates as limit

- Strips:
 - 3-5 strip (double) layers (75mu)
 - Short and long (2.4 cm, 10 cm)
 - All short

• Pixel (additional)

- Outer pixel layers (50 mu)
- Pixel merged in z (coarsening)
 - No pixel only design

3 short layers:

#

0.3

0.25

0.2

0.15

0.1

0.05

 \cap

-10

- 2 % / 10 GeV p_{τ} resolution, (sharp threshold)
- 30 mrad polar angle • resolution (good directional information)
- 0.5 mm distance of closest • approach resolution (vertex *acceptance*)

-2

Track Trigger for Atlas - WIT2010

-8

#

S. Schmitt, A. Schöning

Results

layout	number of templates (min. p _⊤ 10 GeV)
3 short (3/3)	~ 3 billion
3 short 2 long (5/5)	~ 100 billion
1 pixel* 3 short (4/4)	~ 20 billion
2 pixel* 3 short (5/5)	~ 80 billion
pixel*: coarsened 250 µm -> 2.4 cm	

- Number of patterns highly dependent on layout
- 3 short 2 long setup suffers from last layer at 100 cm (large envelope and multiple scatter)

Results

layout	number of templates (min. p _⊤ 10 GeV)	fake rate (400 pile-up)
3 short (3/3)	~ 3 billion	~5000
3 short 2 long (5/5)	~ 100 billion	~100
1 pixel* 3 short (4/4)	~ 20 billion	~2000
2 pixel* 3 short (5/5)	~ 80 billion	~1000
pixel*: coarsened 250 um -> 2 4 cm		to be compared to one signal track p ₋ >10 GeV

- Number of patterns highly dependent on layout
- 3 short 2 long setup suffers from last layer at 100 cm (large envelope and multiple scatter)
- Fake rate is governed by occupancy

How to reduce the fake rate?

3 short + 2 long strip design:

Reducing occupancy by making the long strips short

- From 100 billion to 230 billion templates
- From 100 to 5 fake tracks
- Keeping all strips short but moving the last layer from
 100 cm to 86 cm
 - From 230 billion to 100 billion templates
 - From 5 fake tracks to 20 (higher occupancy in last layer)

Best trade-off between fake rate and #templates so far

Robust design must allow for one inefficient layer

- 4/5 short strips 12 cm spacing (last layer 86 cm)
 - #templates: 160 billion
 - Fake rate: 1000
- 4/5 short strips 8 cm spacing (last layer 86 cm)
 - #templates: 60 billion
 - Fake rate: 1000
- Reducing spacing reduces #templates
- 4 / 5 not feasible, too many fakes

Exploit Double Sided Strips

- Strip layers are double sided with stereo angle to provide z resolution
 - remove stereo angle -> double layer for triggering
- 3 shorts at default position but each two sided
- This leads to a 5/6 sensors layout, 3 double sided strip layers 12 cm apart
 - #templates: 100 billion
 - Fake rate: 50
- Manageable amount of patterns and fake rate

 #templates and fake rate can be further reduced by decreasing layer distances:
 -> 6cm: 30 billion, 10 fake tracks

Track Trigger for Atlas - WIT2010

4 5 mm

Matching 100 billion templates in < 1 μ s

• First step: coarse template search

- #templates ~ 1/pitch²
- Combining 32 strips gives a reduction of factor 1024: 100e9 / 1024 ≈ 100 million
- 100 million templates can be distributed to 10000 parallel Track Finding Units (TFU) each storing 10000 templates
- Second step: refinement relying on lookup only

Detailed Hardware Implementation

H1 FTT: A. Baird et al., IEEE Trans. Nucl. Sci. 48 (2001) 1276 Track Trigger for Atlas - WIT2010 S. Schmitt, A. Schöning

Conclusion

• SLHC conditions very challenging for Level 1 Trigger

- Early Track Triggers are considered to improve lepton identification capabilities
- Minimum of 5 layers are needed to suppress fake rate
 - Pixel layers not useful in L1 trigger
 - Double sided (parallel) strip layers reduce fake rate
- Track Trigger Design using 10¹¹ templates based on CAMs feasible in combination with fast lookups (refinement)
 - progress in circuitry will further expand trigger capabilities
- More detailed designs to be studies
- Ignored the severe bandwidth limitations so far (unsolved)
- Physics studies needed to specify maximum allowed fake rate

Track Trigger for Atlas - WIT2010

Iterative Refinement

Fake rate and #templates vs. spacing

5 short layers, one inefficient (4 layers)

- 1.4 % / 10 GeV p_{τ} resolution
- 13 mrad polar angle resolution
- 0.25 mm distance of closest approach resolution

Track Trigger for Atlas - WIT2010

FTK AM chip

Pattern Counting

Fake p_{τ} distribution

fake tracks biased towards lower momenta