**Track finding with radially pointing scintillating fibers** 

> David Stuart UC Santa Barbara Feb. 3, 2010



Radial fibers, David Stuart, UCSB. p. 2/27

r 🔺

Ź

If the doublets were a single layer of *very thick* silicon, then paired hits become ends of clusters.



Radial fibers, David Stuart, UCSB. p. 3/27

If the doublets were a single layer of *very thick* silicon, then paired hits become ends of clusters. That adds a sign ambiguity, but it could remove the pairing ambiguity.



Radial fibers, David Stuart, UCSB. p. 4/27

If the doublets were a single layer of *very thick* silicon, then paired hits become ends of clusters. That adds a sign ambiguity, but it could remove the pairing ambiguity.

High pT = short cluster with large max Q; Low pT = wide cluster with small max Q.



Radial fibers, David Stuart, UCSB. p. 5/27

r

## Studying two layers of radially pointing fibers: e.g., 1x1mm x 5cm

Situated outside tracker, where material is less critical. High pT = short cluster with large light, gives a potentially simple trigger.



r

## Studying two layers of radially pointing fibers: e.g., 1x1mm x 5cm

Situated outside tracker, where material is less critical.

High pT = short cluster with large light, gives a potentially simple trigger.

Information easily combined with sensing between the layers.

Fiber pixels = "fixels".



r

## **Sensors**?

#### Silicon Photomultipliers (SiPMs) aka Multi-pixel Photon Counters (MPPC) = avalanche photo-diodes operating in Geiger mode.



Radial fibers, David Stuart, UCSB. p. 8/27

http://sales.hamamatsu.com/assets/pdf/catsandguides/mppc\_kapd0002e04.pdf

## **Sensors?** Silicon Photomultipliers (SiPMs) = avalanche photo-diodes operating in Geiger mode.

Obtains linearity by literally counting photons in sub-pixels.



## **Sensor cost?**

About \$20/pixel.

#### 60k used for T2K (1900 yen each) 140k APDs used for CMS ECAL.

Crazy by a few orders of magnitude.

## **Sensor cost?**

About \$20/pixel.

#### 60k used for T2K (1900 yen each) 140k APDs used for CMS ECAL.

Crazy by a few orders of magnitude.

But, cost will come down over time... or inflation.



Radial fibers, David Stuart, UCSB. p. 11/27

# Simulation study of a Strawman design

Two cylinders of 5 cm x 1 mm "fixels", at r=100 and 110 cm (use square fibers rather than round for simplicity).



# Simulation study of a Strawman design

Two cylinders of 5 cm x 1 mm "fixels", at r=100 and 110 cm (use square fibers rather than round for simplicity).

### Implement a crude simulation:

Propagate particles<sup>1</sup> in B=3.8T, find pathlength/fixel Record signals at 10 pe/mm Landau fluctuations (5%) Gaussian smearing =  $sqrt(N_{pe})$ "Simple" clustering.

## I do not include:

Multiple scattering Conversions Nuclear interactions Noise hits (electronic or otherwise)

<sup>1</sup>Use single particle guns and tracks from 10 TeV CMS MC w/ 200 evts pileup.

# **Clustering may be easy enough for online** because points "connected".



Inner layer Outer layer

## **Clustering may be easy enough for online** even in a crowded environment, because points "connected".



Inner layer Outer layer

## **Clustering may be easy enough for online** Example showing all hits from 200 overlaid min bias events.



Inner layer Outer layer

phi

# Light yield / phi slice proportional to p<sub>T</sub>

Peak Phi Q = max light yield, at constant phi summed over z.



Radial fibers, David Stuart, UCSB. p. 17/27

# Light yield / phi slice proportional to p<sub>T</sub>

Improved by combining light yield and cluster size: maxQ/phiWidth



Radial fibers, David Stuart, UCSB. p. 18/27



Radial fibers, David Stuart, UCSB. p. 19/27



Radial fibers, David Stuart, UCSB. p. 20/27



# Can calculate track parameters from end points Eta and phi resolution certainly good enough for Iso.





 $p_{T}$  resolution certainly good enough for Iso. (Stripes due to pixelation).



Radial fibers, David Stuart, UCSB. p. 23/27

## Isolated high $p_T$ track trigger needs front end to:

- 1. Find high  $p_T$  clusters & pairs
- Find all clusters & pairs
- Calculate track parameters
- Calculate isolation sum w/  $z_0$  cut
- Query  $(\phi, z)$  neighbor's Iso

```
Constrain steps 2-5 w/ z<sub>0</sub> from step 1?
but
Seeds for later tracking?
```

To be studied...





Radial fibers, David Stuart, UCSB. p. 24/27

# **Challenges:**

Material

# Alignment

# Radiation damage

Secondaries





# **Challenges:**

# Material

Alignment

Radiation damage

Secondaries

Modules could be built on a CMM

Align and adjust in situ.

Software adjustment?

# **Conclusion:**

Radial fibers for track triggering?

Potential advantages for track finding.

Potential challenges in realization.

Worth investigating.

Radial fibers, David Stuart, UCSB. p. 27/27

#### Additional slides

## **Sensors?** Silicon Photomultipliers (SiPMs) = avalanche photo-diodes operating in Geiger mode.

High QE, but affected by "fill factor".

PDE= Quantum efficiency x Fill factor x Avalanche probability



1x1 mm with 100 pixels 400 pixels 1600 pixels

http://sales.hamamatsu.com/assets/pdf/catsandguides/mppc\_kapd0002e04.pdf

## **Sensors?** Silicon Photomultipliers (SiPMs) = avalanche photo-diodes operating in Geiger mode.

High dark count rate, but mostly single p.e.

S10362-11-050U/C, S10362-11-100U/C



AMBIENT TEMPERATURE (°C)

Radial fibers, David Stuart, UCSB. p. 30/27

http://sales.hamamatsu.com/assets/pdf/catsandguides/mppc\_kapd0002e04.pdf

# **p**<sub>T</sub> from cluster size



Radial fibers, David Stuart, UCSB. p. 31/27

# **p**<sub>T</sub> from cluster size



Radial fibers, David Stuart, UCSB. p. 32/27





dose (p/cm^2)

н

С

А