Architecture of a Level 1 Track Trigger for the CMS Experiment

Ulrich Heintz (Brown University)

for

U.H., M. Narain (*Brown U*)

M. Johnson, R. Lipton (Fermilab)

E. Hazen, S.X. Wu (Boston U)

Workshop on Intelligent Trackers, LBNL, February 3-5, 2010

the problem

SLHC

- Oluminosity = 1035/cm2/s
- 25 ns bunch spacing
- ○≈300 pp interactions/xing on average

CMS

- Omust keep level 1 trigger rate < 100 kHz
- add tracking to level 1 trigger
 - trigger on tracks matched to electrons or muons
 - trigger on isolated tracks (e.g. from τ -leptons)
 - must be efficient down to low pT (≈2 GeV)

3D detector design

- silicon strip sensors
 - \bigcirc active area \approx 100 mm (ϕ) x 100 mm (z)
 - ≈100 μm strip pitch
 - ≈1-5 mm strip length
- sensor stack
 - two coplanar sensors
 - spaced apart by ≈1 mm
 - one readout IC
 - for details of construction see Ron Lipton's talk

10 cm

1 mm

10 cm

- rod
 - two layers of sensor stacks
 - spaced apart by ≈4 cm
 - of for details of construction see Bill Cooper's talk

low-pT hit rejection hit clusters cluster adjacent pixels • reject clusters >2 pixels wide hit positions; hit positions doublets • coincidence between clusters in both sensors reject single clusters and doublets from soft tracks $\Delta \phi >$ threshold $\Delta \phi$ < threshold interaction point interaction point

detector geometry

- here: six layers of sensor stacks
 - three stations with two stacks ≈ 4 cm apart

rates

- MC simulation
 - PYTHIA minimum bias, <n>=200
 - cluster rate

R = 35 cm	R = 55 cm	R = 110 cm	@ z=0
≈4	≈1.6	≈0.2	MHz/cm ²
≈10	≈4	≈0.5	/xing/module

- Odoublet rate
 - 1 mm stack separation

R = 35 cm	R = 55 cm	R = 110 cm	@ z=0
≈0.3	≈0.13	≈0.025	MHz/cm ²
≈0.7	≈0.3	≈0.06	/xing/module

data transmission off detector

- optical fiber links
 - Oaverage rate $\approx 1/2$ max rate @ z=0
 - safety factor of ≈10
 - 20 bits/doublet
 - assume bandwidth of fiber links <10 Gb/s</p>
 - inner station
 - → 1.5 MHz/cm²
 - 42 modules in z → 4200 cm²
 - 250 Gb/s per rod (2 stacks)
 - 30 links per rod
 - assume other stations have same number of hits
 - → ≈2160 links for entire tracker

φ: 10 bits

z: 7 bits

pT: 3 bits

basic idea for off-detector processing

for each sector

represent every possible hit combination by a logic "equation":

$$S_{1i} \cap S_{1o} \cap S_{2i} \cap S_{2o} \cap S_{3i} \cap S_{3o}$$

- create a table of all possible equations in FPGA
- load all hits for an event into registers in FPGA
- evaluate all equations simultaneously in one clock cycle
- equations which are satisfied correspond to reconstructed tracks
- timing dominated by time needed to load hits into FPGAs

problem

- if we tried to do all six layers at one time
- too many equations
- too many inputs
- need to factor problem

sector structure

- trigger logic handles inputs from sectors n-1, n, n+1
- tracks must be contained in 3 adjacent sectors
- sector size determines min p_T for full acceptance

equation count

- assume azimuthal position resolution ≈ 0.1 mm
- number of φ positions per sector:
 - ≈ 2900 in outer station
 - \bigcirc ≈ 1450 in middle station (for each outer station position)
- number of equations
 - $\bigcirc \approx 2900 * 1450 = 4,200,000$
 - too many equations for single chip.
- number of fibers
 - 90 fibers from each sector
 - too many inputs for single chip n-1
- divide outer station into 12 sub-sectors
 - route tracklets from inner and middle stations to subsectors using interaction point and p_T

n+1

tracklets

- double stacks allow local track finding on each rod
- combine stubs from the two stacks in each station to form tracklets
 - O drop in rate by about factor 4 (but need ≈30 bits/tracklet)
 - for each stack in inner layer need to process data from two adjacent stacks in z in outer layer

stub (2-layer coincidence)

tracklet processing

- processing done off detector
 - input 30 fibers per station
 - fits into current FPGA (44 inputs at 10 Gb/s)
 - o must do all processing in 25 ns
- local to each module
 - 42 modules in inner layer
 - need information from top and bottom stacks plus neighboring stack(s) for z overlap
- data volume
 - 8 stubs/event/module @ 20 bits/stub → 160 bits
 - fits into FPGA registers
 - compare all hits between stacks simultaneously in \$\phi\$ and z
 - z range restricted by length of IP
 - φ range restricted by min. p_T

tracklet bandwidth

- simulation shows tracks are half the stub rate
- safety factor
 - 10 included fluctuations
 - should be less over rod → use safety factor of 6
 - track density drops faster than stub density with z
 - use same density as for stubs (conservative)
- 40 tracklets/rod @ 30 bits/tracklet = 48 Gb/s

tracklet output

- sort tracklets by destination segment
 - Send over dedicated fiber line
 - ○12 segments/sector times 3 sectors = 36 fibers
 - 48 Gb/s divided among 36 fibers so 8 Gb/s fiber OK
 - project to 2 different layers
 - Output fibers from tracklet forming FPGA

 Segments must have overlap to account for projection errors (about 10% of segment)

 Sector N-1

POSITIVE TRACK

sector processor

- receive tracklets from 2 stations in 3 sectors plus stubs from anchor layer in home sector
 - 1 fiber/rod/layer/sector for inner and middle layers
 - 3 rods times 3 sectors plus 3 for anchor station = 12 input fibers
 - plus 1 fiber for trigger output
- need to compare all possible combinations of input tracklets so need all tracklets in registers in FPGA
 - 3 times 40 tracklets/station = 120 tracklets in 12 segments
 - 10 tracklets/segment times 30 bits = 300 bits so OK
- output tracks ordered in p_T highest first

sector processor

duplicate eliminator

- find tracks in all 3 layers simultaneously
 - → remove duplicate tracks
- receive data from 12 segments times 3 anchor stations or 36 fibers
- tracks ordered in pT -> simplifies search
- output tracks on perhaps 4 fibers

pipeline stages

- tracklet block
 - (1) load stub data from sensors
 - (2) form tracklets from stubs
 - (3) sort tracklets by destination segment
 - (4) transfer to segment processor
- segment processor
 - (5) receive tracklet data from 3 stations
 - (6) find tracks
 - (7) check z consistency
 - (8) transfer tracks to duplicate eliminator
- duplicate eliminator
 - (9) receive track data from all 3 layers
 - (10) compare inputs, eliminate duplicates
 - (11) send track data to L1 trigger
- ≈11 total pipe line stages for system
- < 1 μs

optical link power

- 30 fibers in inner station/sector
- about same number of tracks in all stations → 90 fibers/sector
- 24 sectors → 2160 fibers
- power ≈1 watt/driver → 2 kW

summary

- robust design
 - ocan lose a stub in any layer and still form track
 - sensor or chip failure does not impact trigger efficiency
- not constrained by FPGA size
- getting all required data into one place is an important constraint
- very large number of high speed links
 - oreliability, mass, power of fiber links are critical
- verify rate estimates with LHC data