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Outline

• Mass Spectrometry and Ion Imaging

• Pixel Imaging MS 

• PImMS Sensor
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Introduction: Mass Spectrometry
• Mass spectrometry: very popular tool in chemistry, biology, 

pharmaceutical industry etc.
• TOF MS: Heavier fragments fly slower

Mass spectrum for human plasma

E

DetectorOptics

Total Time ~ 100 µsec

• Measure detector current: limited to one dimension
• Ion imaging : go beyond 1D by providing 3D information for 

each mass peak
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Ion Imaging
� Fix a mass peak
� Measure full scattering 

distribution of fragment ions
� Velocity maping
� Different fragmentation 

processes give the ions 
specific speed and angular 
distributions

S atom ion images for OCS 
photodissociation at 248nm

Ion 
optics

Velocity mapping
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Visible Light vs Direct Detection

Visible light detection

MCP  Phosphor

pixel sensor

Electron detection

MCP
pixel sensor

E

• Typically use visible light but direct detection of 
electrons after MCP is possible 
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Pixel Imaging Mass Spec: PImMS 

PImMS = Mass Spectroscopy Χ Ion Imaging

• Recent progress in silicon technologies: fast pixel 
detectors overcome the single mass peak limitation

• Direct spin-off of ILC sensor work, pixel design inspired 
by TPAC  (DECAL MAPS sensor)

• Now a 3-year knowledge exchange project funded by 
STFC to build a fast camera for mass spec applications



Andrei Nomerotski

7

ILC and PImMS
• PImMS and ILC have similar data structure

u PImMS : 0.2 ms duration @ 20 Hz
u ILC:        1.0 ms duration @   5 Hz
u Time resolution required: ~100 ns for similar occupancy

337 ns

2820x

0.2 s

0.95 ms

time

0.05 s

0.2 ms

PImMS

ILC



Andrei Nomerotski

8

Pixel Imaging Mass Spec: PImMS 

• Imaging of multiple masses in a single 
acquisition

• Gives access to new information, 
provides scope for a range of new 
techniques

• Mass resolution determined by flight 
tube, phosphor decay time and camera 
speed
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Fast Framing CCD Camera

Technology currently in use in our lab:
u CCD camera by DALSA (ZE-40-04K07)

s 16 sequential images at 64x64 resolution
s Pixel : 100 x 100 sq.micron
s Max frame rate 100 MHz (!)

u ISIS Principle: local storage of charge 
in a CCD register at imaging pixel 
level 

u Limitations
s Number of frames
s Images between mass peaks are not useful

Fast framing camera currently in use
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Data with DALSA FFC

• Single frame shots with DALSA 
and normal CCD cameras

u Slow CCD camera pixels 12x12 
µm2

u Square is 100x100 µm2

Slow CCD camera

DALSA FFC
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Velocity Mapped PImMS (1)

• 2007-2008: Proof of concept experiment successfully performed on 
dimethyldisulfide (DMDS)3

• Ionization and fragmentation performed with a polarized laser, data 
recorded with DALSA camera.

CH3S2CH3

3:  M. Brouard, E.K. Campbell, A.J. Johnsen, C. Vallance, W.H. Yuen, and A. Nomerotski, Rev. Sci. Instrum. 79, 123115, (2008)
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PImMS Sensor
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• Signal detected in thin epitaxial layer < 
20 µm

• Limited functionality as only NMOS 
transistors are allowed 

u PMOS transistors compete for charge

• INMAPS process developed at RAL

s Shields n-wells with deep p+ implant

s Full CMOS capability

s Substrate choice for improved charge 
collection efficiency and radiation hardness

s Developed on a 180nm CMOS platform, 
transferable to smaller feature size, e.g. 130 
nm

Monolithic Active Pixel Sensors

TPAC sensor for ILC digital calorimetry 
using INMAPS process
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PImMS and MAPS
• Performed measurements in 2009 with 

existing CMOS sensors, Vanilla, designed by 
RAL

u Similar detection technology (not INMAPS) 
but slow frame rate

• Used to formulate specifications for PImMS 
sensor

VANILLA TOF MS image

Single cluster in VANILLA
Signal in VANILLA, electrons
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• Time stamping provides same information generating much less data 
• BUT needs low intensity (one pixel hit only once or less)

• PImMS is a good match for time stamping

Fast Framing vs Time Stamping

Fast framing

Time stamping
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PImMS Sensor
• Targeted specifications 

u 512 x 512 pixels
u Pixel dimensions 70x70 µm2  

u 12 bit counter
u 40 MHz clock, distributed to all pixels
u Time resolution < 100 nsec
u Each pixel can record 4 time stamps
u 30 µW/pixel
u 25 MHz 12-bit parallel digital output 
u 10 MHz analogue output(s) for 

calibrations
u 20 Hz rate, possible with USB2.0

Preliminary (incomplete) layout
Total transistor count ~700/pixel
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Simulations of PImMS FE Performance

Preamp, Shaper, Comparator outputs for test signals (4000e followed by 300e)
17
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Simulations of PImMS Sensor Performance
• Improved design with respect to ILC-TPAC design

à Increased dynamic range and response to large signals
à Good linearity (gain change <5% for 300e signal up to 15000e)
à Noise 50 e
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Shaper output response for 300e- after different events

step for last 300 e old PImMS (mV)

step for last 300 e (mV) TPAC

step for last 300 e new PImMS(mV)

Phase margin is good and gain is acceptable
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Timing Resolution 

PImMS Design

Time to 4σ 300e-/4000e- (ns) 65/24

Recovery Time for 4000e- (ns) 500

Peaking time (ns) 100

19

• Timing determines mass resolution – important
• Best Mass Spectrometers : ~ 0.1 ns but many interesting 

applications with 10-100 ns
• In PImMS will be limited by time walk for different amplitudes (not 

by diffusion!)
• Clock skew for large sensor ~25 nsec
• Saturated MCP may improve the timing resolution

• Recovery time determines pixel dead time (~1%) until next time 
stamp can be accepted
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Ion Intensity Simulations

• It’s important to be sensitive 
to heavy fragments

• Simulated probability to 
have N hits/pixel

• Four buffers allow higher 
intensity
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PImMS Pixel Power

Circuit Block Average Power

Preamp 3

Shaper 3

Comparator 6.9

Digital Control 15

Time Code Dist. 
(SRAM)

0.8

Spec 30

Total 28.7

21
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Quantum Efficiency Estimate

• Fill factor 20%
• Expect QE around 6%, based on previous designs

• Discussing options with micro lenses or backthinning

22
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PImMS Timeline

• Currently in the design phase
u Pixel schematics complete
u Pixel layout review next week

• Submission PImMS1.0 : end of June 2010
u Smaller prototype 80x80 pixels (7x7 mm2)
u Back in September

• First results: Dec 2010

• Large (512x512?) sensor ready: Dec 2011
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Preparations in Oxford Chemistry

• TOF MS in Oxford Chemistry PImMS sensor will be 
mounted here 
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Summary

• Pixel Imaging Mass Spectroscopy is a powerful hybrid of usual 
TOF MS and Ion Imaging

• Progress in sensor technologies allows simultaneous capture of 
images for multiple mass peaks

• PImMS specifications are similar in time resolution and data 
rates to ILC vertexing and digital calorimetry

• First PImMS sensor expected in 2010, final sensor in the end of 
2011


