A high efficiency readout architecture for a large matrix of pixels.

WIT 2010 – Workshop on Intelligent Trackers Feb. 4th 2010, Berkeley – CA

Alessandro Gabrielli, Filippo Maria Giorgi, Mauro Villa I.N.F.N. & University of Bologna

Outline

- Target operating conditions
- Matrix overview
- Readout architecture
- Simulations & Efficiencies
- Demonstrator chip submission
- Applications

Target conditions

- An architecture that can be integrated with hybrid pixel sensors or MAPS (Monolithic Active Pixel Sensor)
- 100 MHz/cm² hit rate (compatible with the rate foreseen in SuperB Layer0)
- **0.25 2.0 μs** BCO clock:
 - Time Counter clock, represents the time granularity of the events.
- **60-100 MHz** Matrix Readout Clock
- 3 Gbit/s data bus bandwidth per chip

Matrix Overview

F.Giorgi – WIT2010 Berkeley, CA

Matrix Overview

Matrix Overview

- Pixel groups called Macro Pixels
- MP shape 2x8 pxl
- Reduce logic in every pixel
- Reduce global routes towards readout logic.

- 80K pixel matrix
- Total area ~ 1.3 cm²
- 130 Mhit/s
- 40 microns pitch
- 4 indep. submatrices
- 4 indep. column scans
- 4 active columns (AC) read in 1 clk

1024 pixels analyzed in 1 CLK cycle: @50MHz \rightarrow 5 Gpxl/s

Matrix overview

- Binary **pixels matrix**
- Hit readout through a column-wide shared data-bus

Submatrix Scan Policy

The Macro Pixels

Matrix is divided into MPs: group of pixels (2x8)

- MP global lines:
 - Fast-OR line: (MP output) inclusive OR of all pixel latches.
 - Freeze line: (MP input) disable the reception of new hits.
- On BCO clock edge all MPs with active fast-OR :
 - Gets frozen
 - Are associated to the current value of BCO counter (Time Stamp) in a LUT memory of the readout
 - Waits to be scanned and reset

Matrix readout architecture

- Each sub-matrix scan has its own readout & scan logic
- All readout working in parallel
- Common final output stage

Sub-matrix readout architecture

11

The sparsifiers and barrels

Output stage data-bus solutions

- 8 bit TS (modulo 256 BCO counter)
- 9 bit X address (320 pixels)
- 8 bit Y address (256 pixels)
- TOT 25 bits
- \rightarrow expected rate 130 MHit/s per chip = 130MHz x 25bit = <u>3.2 Gbps</u>
- 2. Zone sparsification & time sorting of the hits (TS heading the relative hits, 1 MHz BC clock) lead to:
 - 2 bit Barrel L2 address (\rightarrow 1/4 of submatrix: 80x64 pxl)
 - 2 bit Barrel L1 address (1 submatrix: 80x256 pxl)
 - 7 bit X address (80 pixels)
 - 3 bit zone Y address (8 vertical zones for each L2 barrel)
 - 8 bit zone pattern
 - TOT 22 bits
 - \rightarrow expected rate: 130 (+1 TS) * 22 = <u>2.8 Gbps</u>

BUT: assuming a x4 cluster factor of the form 2x2: in 87.5% of cases 2 hits only & in 12.5% are required 4 hits

- → [(22*2)* 0.875 + (22*4)*0.125] *25 Mtrack s⁻¹ cm⁻² * 1.3 cm²
 - Weighted average ~ <u>1.6 Gbps</u>

VHDL model simulations

- VHDL models verification
- First-order estimation of the optimal parameters of the architecture in several working conditions:
 - Barrels depth
 - Zone width
- Long batch runs for efficiency estimation in function of the operating conditions (RDclk, rate etc...)

Efficiencies

- Two sources of inefficiency due to digital readout:
 - Frozen MP inefficiency: the hits generated on a frozen MP or on an already activated pixel are lost.
 - Overflow inefficiency: when a buffer is full it looses the eventual incoming hits.
- NO sensor efficiency is taken into account in these simulations. We give numbers relative to the digital readout architecture only.

Frozen MP Efficiency @ 100 MHz/cm²

(1-ineff.)

(Random and no clusters \rightarrow **no zone benefits** at this rate)

SuperPix0 - demonstrator with smaller matrix

- Submitted Sept. 2009
- Technology STM 130 nm
- Hybrid Pixels Matrix 128x32 pixels, 50 µm pitch (1/20 of the target matrix area)
- Only 2 readout instances implemented
 - The readout instances are oversized respect to the matrix height (32 vs 256 pixels), but the connections implemented allows to stimulate all the components.

SuperPix0 layout - ST130nm

Application on a DAQ chain

For the **SLIM5 collaboration** a similar readout architecture was implemented within a MAPS sensor chip. It has been tested with a silicon strip telescope and a powerful DAQ system during a test beam in 2008

Application on a DAQ chain

Conclusions

- Development under challenging target conditions
- Optimization of the architecture in several directions:
 - High speed: 100 Mhit/cm² rate, processed 50 Gpxl/s.
 - High efficiency: 98–99%.

- Low bandwidth cost per chip: clusters optimization and time-wise scan halves down the bandwidth.
- Demonstrator submitted Sept. 2009 ...awaiting for silicon.

Thanks for your attention

Filippo Giorgi INFN Bologna (Italy) giorgi@bo.infn.it

F.Giorgi – WIT2010 Berkeley, CA

Backups

F.Giorgi – WIT2010 Berkeley, CA

Study on Barrel optimal Depth:

F.Giorgi – WIT2010 Berkeley, CA

Study on Barrel optimal Depth:

The Slow Control bus: I²C–like system

Registers R/W access communication type

- I²C : two bidirectional open-drain lines.
- Serial Data (SDA)
- Serial Clock (SCL), pulled up with resistors.

Slow Control

- I Set of Read/Write registers
 - Chip settings
 - MP masks
- I set of Read Only registers
 - Acquisition flags
 - Rate counters
 - Error flags

Sub-matrix readout Efficiency table

Hit rate 100 MHz/cm^2

	sim DURATION	RDclk	BCO	Mean Sweeping	global hit	rate on area	B2	B1	Scan buffer	Already hit effi	Frozen MP	Overflow effi B2	Overflow effi B1
RN	(us)	(MHz)	(us)	time (us)	rate (MHz)	(MHz/mm2)	depth	depth	overflow	(%)	effi (%)	(%)	(%)
107	1	60	0,5	0,45	33,8	1.03	8	32	0	99,96	98,90	100	100
108	1	80	0,5	0,34	33,8	1.03	8	32	0	99,95	<u>99,39</u>	100	100
109	1	100	0,5	0,27	33,8	1.03	8	32	0	99,96	99,53	100	100
110	1	60	1	0,75	33,8	1.03	8	32	0	99,91	98,83	100	100
111	1	80	1	0,56	33,8	1.03	8	32	0	99,91	99,10	100	100
112	1	100	1	0,45	33,8	1.03	8	32	0	99,91	99,25	100	100
113	1	60	1,5	0,95	33,8	1.03	8	32	0	99,86	98,78	100	100
114	1	80	1,5	0,71	33,8	1.03	8	32	0	99,86	99,05	100	100
115	1	100	1,5	0,57	33,8	1.03	8	32	0	99,86	99,23	100	100
116	1	60	2	1,08	33,8	1.03	8	32	0	99,84	98,42	100	100
117	1	80	2	0,81	33,8	1.03	8	32	0	99,83	98,81	100	100
118	1	100	2	0,65	33,8	1.03	8	32	0	99,83	99,04	100	100

SIMULATIONS: the infrastructure

- Realistic VHDL model of a Sub-matrix for behavioral simulation.
 - 2D array of MP entities, each one with uniform random hit generation. User-defined hit rate.
 - NO pixel dead time taken into account. (pixel immediately reset after read)

VHDL test bench

- Integrated data integrity check.
- Efficiencies evaluation.

- File logs
 - · Simulation runs e-log (storing the whole parameter set for each simulation)
 - Frozen hit log (once a MP gets frozen, the fired pixels within are stored in absolute x-y format)
 - · B2 Readout log (stores the hits read out from any of the B2 decoded in absolute x-y format)
 - B1 Readout log (stores the hits read out from B1 decoded in absolute x-y format)
 - Output log (stores the hit read out from the final output stage decoded in absolute x-y format)
- Hit controller program: a C++ tool that checks the correspondence between the frozen hit log and output log.

- Pixels grouped into Macro Pixels:
 - Minimum entities addressable by readout logic
 - Minimum entities for time tagging

- Pixels grouped into Macro Pixels:
 - Minimum entities addressable by readout logic
 - Minimum entities for time tagging

- Pixels grouped into Macro Pixels:
 - Minimum entities addressable by readout logic
 - Minimum entities for time tagging

- Pixels grouped into Macro Pixels:
 - Minimum entities addressable by readout logic
 - Minimum entities for time tagging

- Pixels grouped into Macro Pixels:
 - Minimum entities addressable by readout logic
 - Minimum entities for time tagging

- Pixels grouped into Macro Pixels:
 - Minimum entities addressable by readout logic
 - Minimum entities for time tagging

- Pixels grouped into Macro Pixels:
 - Minimum entities addressable by readout logic
 - Minimum entities for time tagging

- Pixels grouped into Macro Pixels:
 - Minimum entities addressable by readout logic
 - Minimum entities for time tagging

Components synthesis

Components	Flip Flop registers	Logic gates
B2	~140	~1400
B1	~1000	~6700
Concentrator	~230	~1000
Concentrator out	~120	~370
I2C interface	~130	~600
Mask register	~520	~2300
Scan buffer	~4700	~9600
Register file	~1000	~2700
Sparsifier	~160	~1000
Sweeper	~7200	~16200