Architecture of a module with transverse momentum discrimination for the CMS Tracker Upgrade

A. Marchioro / CERN WIT2010 - February 2010

Collaborating in this work

- CERN
 - D. Abbaneo
 - P. Aspell
 - D. Felici
 - L. Pierobon
 - A. Conde
- IC
 - G. Hall
 - M. Raymond
 - M. Pesaresi
- Cornell University
 - A. Ryd
 - L. Fields

Outline

- Overview of the proposed architecture
- Details of module interconnect scheme
- Logic for Data Movement and Trigger Primitives
- The hardware simulation environment
- Some circuit details
- Conclusion

History of the concept in CMS

Layout model

A.Marchiorc

Module overview

Module Layout

Base Option: WB + BB

Module size = [6 * 8] x [3 * 16 + 12] mm

A.Marchioro / WIT 2010

Sensor to FE chip Z-pitch adaptation (for WB option)

r

Ζ

Base Option++: WB & BB

Module Assembly

Advanced Option: TSV & BB

ASIC size: 7.2 x 16 mm2 Sensor size: ~ 100 um x 2000 um Channel size: 100um x 1750um # channels: 160 x 4 = 640 channels

Pixel block Floorplan

Single Channel size: 100 x 1750 um

Analog circuit: 100 x 750 um2

Bias, DACs etc: 100 x 200 um2

C4 Bump-bond pad: 90 x 90 um2

Event Memory depth: 6 usec

- -> memory length: 40 x 6 ~ 256 bits
- -> cell size: 2.1 um2
- -> block size: 750 um2 ~ 28x28 um2 (rounded to 100x100 um2)

Trigger logic and Lookup SRAM -> 300x100 um2

Read-Out Logic: 80 x 80 um2 Channel Configuration regs: 100 x 100 um2

Functional block diagram

Material

- Average radiation length in tracking volume [0, 2.4]: 55% ullet– Max of ≈155%
- Average interaction length in tracking volume [0, 2.4]: 16% ٠

– Max of ≈42%

Material entirely dominated by the two P_T layers

Trigger Logic Algorithm

• Step 1:

– Elimination of large clusters

- Step2:
 - Transfer from "top" chip to "bottom" chip
 - Z alignment
 - Φ alignment
- Step 3:
 - Coincidence between planes

Step 1: Rejection of large clusters

- All these combinations to be eliminated before transferring pattern to master layer.
- Algorithm for clean-up:

if any pixel has more than one neighbor turned on in a + - 1 vicinity, all are turned off

A.Marchioro / WIT 2010

Step 1: Cluster reject

For each pixel hit:

- Look in all adjacent pixels
- for clusters of at least 3 pixels
- eliminate all clusters of 3 or more

Step 2: 2+2mm strips Simplified Z alignment

Maximum Z shift for 2 mm spacing: ~ 11 mm (i.e. ~6 pixels) at η =2.5 but only some connections shown A.Marchioro / WIT 2010

Step 2: Φ Alignement

Having an "electronic" alignment scheme can save significant manufacturing cost

Step 3, option 1: coincidence between planes

Step 3, option 2: coincidence between planes

Step 3: Verilog Model of Pixel Logic

Pixel (Master at bottom)

Pixel (Slave on top)

27

Algorithm efficiency

рТ	Total Events	Trigger miss	Efficency
2 GeV/c	118	4	96.61%
5 GeV/c	120	0	100%
50 GeV/c	112	2	98.21%

Remarks:

- few events in each MC sample
- full Z and Φ alignment logic not yet implemented
- simple trick to improve Φ coverage at chip boundaries not yet implemented

Missed event

Power Estimation for SRAM

- Identical memory block is used for cluster rejection (upper chip) and trigger matching (lower chip)
- Power reduced by:
 - Optimized manual layout of all blocks (no generator used)
 - Enabling bitline PC only on active column during read
 - Slow rise-time on WL enables using minimum size transistors in cells

• 512x1 SRAM power:

- Full from circuit simulation (including address decoding etc.) for 90nm technology @1 V and operating at 40 MHz is 13 uW
- Cell size 2.52 x 0.84 um

SRAM Array detail

Conclusion

- Final detailed design still awaits for confirmation from MC refinements and early LHC cross-section data for final word on occupancies
- Moderately aggressive technological choices with predictable cost
- Verilog model of entire Front-End Trigger Logic and interconnectivity developed:
 - Verilog capable of processing data from real MC events
- Preliminary floorplanning
 - Preliminary power estimations gives ~ 100 uW/pixel for a 100x2000 μm^2 pixel size
- Design of critical blocks in 90 nm CMOS has started

Thank you!

SPARE SLIDES

Measuring transverse momentum (p_T)

OK, small bend

Not OK, too large bend

Stacking in Commercial Devices

Front-End to Opto-link connectivity

Opto to Trigger

- 18 chips/side
- 18 inputs to Opto-link
 - Only master provide trigger info
- Synchronous decision 10+5 ??? bit/chip @ 40 MHz to
- Overhead per module: 8 bit
- Total BW/ MCM = 10 * 18 * 40 MHz = 10.8 Gbit/sec

Step 2': Z alignment with (some) details Upper plane

Maximum Z shift for 2 mm spacing: ~ 11 mm at η =2.5

38

Step 2 (option): Z alignment with (some) details Upper plane

Maximum Z shift for 2 mm spacing: ~ 11 mm at η =2.5

Transmission between planes

- Each row of each chip from upper plane has to transfer data to corresponding chip in lower plane (chip 1 to chip 6, 2 to 5, 3 to 4)
- One 12 bit word per chip row, 48 bits per chip to go through substrate
- @160 MHz, four cycles are available:
 - Cycle1: 1 talks to 6
 - Cycle2: 2 talks to 5
 - Cycle3: 3 talks to 4

ΖÍ

- Using regular CMOS drivers @1V swing, estimated power is:
 - 48 * ½ * 10 pF * (1V)^2 * 20 MHz = 4.8 mW (total power budget for entire chip: 64 mW)

Connectivity per module (high granularity, 1')

- Each MCM has 18 chips per side , i.e. 3 rows of 6 chips
- Assuming that each chip with 640 pixels multiplexes one column of four pixels into one line, then:
 - For each column:
 - First 4 rows of chips have 3 inputs
 - Fifth row of chips has 2 inputs
 - Sixth row of chips has 1 input
 - Total connectivity per Z-column: 17 lines
- Total module connectivity: 17*480=8,160 lines

Step 1: Event from MC

Step 2: Conversion to Verilog

Event 3
N
······································
······································
NN

Step 3': Verilog Model

pixel pixel12 (TriggerOut[12], ClusterRjectOut12, PixelUpOut12, LocalHitOut12, CleanPixelOut12, SerialConfOut12
, ConfCkOut12, Ck, ConfCkOut11, SerialConfOut11, Reset, MasterSlave, PixelUpIn12, LocalHitIn[12],
{3'b000,PixelUpOut11,PixelUpOut13,PixelUpOut171,PixelUpOut172,PixelUpOut173}

, {3'b000,LocalHitOut11,LocalHitOut13,LocalHitOut171,LocalHitOut172,LocalHitOut173}

, {3'b000,ClusterRejectOut11,ClusterRejectOut13,ClusterRejectOut171,ClusterRejectOut172,ClusterRejectOut173}); pixel pixel13 (TriggerOut[13], ClusterRjectOut13, PixelUpOut13, LocalHitOut13, CleanPixelOut13, SerialConfOut13 , ConfCkOut13, Ck, ConfCkOut12, SerialConfOut12, Reset, MasterSlave, PixelUpIn13, LocalHitIn[13],

{PixelUpOut-148,PixelUpOut-147, PixelUpOut-146,PixelUpOut12,PixelUpOut14,PixelUpOut172,PixelUpOut173,PixelUpOut174}

{LocalHitOut-148,LocalHitOut-147,LocalHitOut-146,LocalHitOut12,LocalHitOut14,LocalHitOut172,LocalHitOut173,LocalHitOut174}

{ClusterRejectOut-148,ClusterRejectOut-147,ClusterRejectOut-146,ClusterRejectOut12,ClusterRejectOut14,ClusterRejectOut172,ClusterRejectOut173,ClusterRejectOut174});

pixel pixel14 (TriggerOut[14], ClusterRjectOut14, PixelUpOut14, LocalHitOut14, CleanPixelOut14, SerialConfOut14
, ConfCkOut14, Ck, ConfCkOut13, SerialConfOut13, Reset, MasterSlave, PixelUpIn14, LocalHitIn[14],

{PixelUpOut-147,PixelUpOut-146, PixelUpOut-145,PixelUpOut13,PixelUpOut15,PixelUpOut173,PixelUpOut174,PixelUpOut175},

{LocalHitOut-147,LocalHitOut-146,LocalHitOut-145,LocalHitOut13,LocalHitOut15,LocalHitOut173,LocalHitOut174,LocalHitOut175}

,

{ClusterRejectOut-147,ClusterRejectOut-146,ClusterRejectOut-145,ClusterRejectOut13,ClusterRejectOut15,ClusterRejectOut173,ClusterRejectOut174,ClusterRejectOut175});

pixel pixel15 (TriggerOut[15], ClusterRjectOut15, PixelUpOut15, LocalHitOut15, CleanPixelOut15, SerialConfOut15 , ConfCkOut15, Ck, ConfCkOut14, SerialConfOut14, Reset, MasterSlave, PixelUpIn15, LocalHitIn[15],

{PixelUpOut-146,PixelUpOut-145, PixelUpOut-144,PixelUpOut14,PixelUpOut16,3'b000}

, {LocalHitOut-146,LocalHitOut-145,LocalHitOut-144,LocalHitOut14,LocalHitOut16,3'b000}

, {ClusterRejectOut-146,ClusterRejectOut-145,ClusterRejectOut-144,ClusterRejectOut14,ClusterRejectOut16,3'b000});