	Single p _T Layer Performance	

Simulating the performance of a p_T tracking trigger for CMS

Mark Pesaresi

Imperial College, London CMS Collaboration

Workshop on Intelligent Trackers, 2010

1 Introduction

Why do we need a tracking trigger? What is stacked tracking?

- 2 Simulation
 - Detector Modelling

3 Single p_T Layer Performance

- Sensor Separation vs. Correlation Window
- Tilted vs. Untilted Modules
- Occupancy

4 Two Layer Performance

- Track Reconstruction
- Efficiencies and Fake Rates
- Reconstruction Performance

5 Summary

1 Introduction

Why do we need a tracking trigger? What is stacked tracking?

2 Simulation

Detector Modelling

3 Single p_T Layer Performance

- Sensor Separation vs. Correlation Window
- Tilted vs. Untilted Modules
- Occupancy

4 Two Layer Performance

- Track Reconstruction
- Efficiencies and Fake Rates
- Reconstruction Performance

5 Summary

Introduction ●○○	Single p _T Layer Performance		
		Introdu	uction

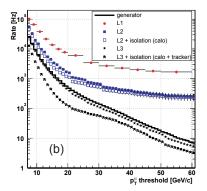
A fair overview has been presented this morning...

By now you know,

- The CMS detector was designed for ~ 10 years operation at a luminosity of $10^{34} cm^{-2} s^{-1}$.
- The majority of the detector will perform well at the sLHC upgrade luminosity (up to 10³⁵ cm⁻² s⁻¹).

Outline	Introduction ●○○	Single p _T Layer Performance		
			Introdu	uction

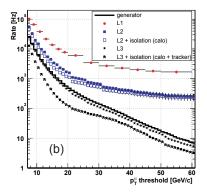
A fair overview has been presented this morning...


By now you know,

- The CMS detector was designed for ~10 years operation at a luminosity of 10³⁴ cm⁻²s⁻¹.
- The majority of the detector will perform well at the sLHC upgrade luminosity (up to 10³⁵ cm⁻² s⁻¹).
- Complete replacement of the tracking system will be required to survive the increased radiation environment and occupancies.
- Online trigger (L1) must continue to operate with a maximum 100 kHz rate.

Introduction	Single p _T Layer Performance		
	Tria	noring at the	ର HC

L1 trigger must offer similar or better background rejection even with increased pileup, but


- Single µ rate cannot be constrained by increasing reconstructed track transverse momentum (p_T) threshold.
- A transverse energy (E_T) cut of at least 50 GeV is required to constrain the single isolated e/γ trigger.

Introduction ○●○	Single p _T Layer Performance		
	Tria	nering at the	ब HC

L1 trigger must offer similar or better background rejection even with increased pileup, but

- Single µ rate cannot be constrained by increasing reconstructed track transverse momentum (p_T) threshold.
- A transverse energy (E_T) cut of at least 50 GeV is required to constrain the single isolated e/γ trigger.

And physics performance must not be sacrificed...

Higher L1 thresholds will degrade sensitivity to LHC low mass discoveries.

Combined triggers risk biasing trigger strategy or important decay channels.

Stacked Tracking Concept

Solution (of course!)...

000

Replacement tracker should provide basic hit information to the trigger.

But how?

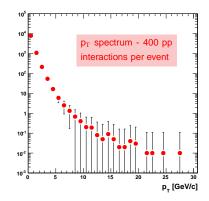
Enormous power requirements and limited space for cabling and cooling.

Present tracker draws almost as much as the CMS superconducting solenoid (\sim 15 kA)!

Constrained by huge bandwidth requirements to read out hits at 40 MHz.

• Data rates $\sim 10-20 \,\text{Gbcm}^{-2}\text{s}^{-1}$ to read out a layer at 10 cm.

Stacked Tracking Concept


Solution (of course!)...

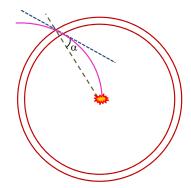
Introduction

Replacement tracker should provide basic hit information to the trigger.

Tracks with transverse momentum less than 1 GeV/c are considered 'uninteresting' for physics.

- Around 85% charged tracks reaching a layer of 25 cm have p_T<1 GeV/c.
- An intelligent tracker could reduce the data bandwidth by a factor of ~10 by rejecting these hits.

Stacked Tracking Concept


Solution (of course!)...

Introduction

Replacement tracker should provide basic hit information to the trigger.

Idea is to correlate hits between closely separated pixel sensors (stacks) using a simple matching algorithm

- Correlated hits can provide an effective geometrical cut on track p_T.
- Multiple stacks of pixels sensors allows for track reconstruction if correlated hits can be combined.

	Simulation	Single p_{T} Layer Performance	

Introduction

Why do we need a tracking trigger? What is stacked tracking?

2 Simulation

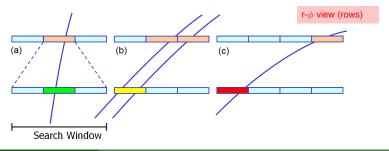
Detector Modelling

3 Single p_T Layer Performance

- Sensor Separation vs. Correlation Window
- Tilted vs. Untilted Modules
- Occupancy

4 Two Layer Performance

- Track Reconstruction
- Efficiencies and Fake Rates
- Reconstruction Performance


5 Summary

		Simulation ●0000	Single p _T Layer Performance		
				Corre	lation
Co	oncept				

Comparison between hit pixels on upper and lower sensors.

A successful correlation is identified as a stub.

- High p_T tracks can be identified if hits lie within a search window in r- ϕ (rows).
- Assumes binary readout.
- Stubs from two separate p_T layers can be correlated to obtain tracklets.

	Simulation ●OOOO	Single p _T Layer Performance		
			Corre	lation

Concept

Comparison between hit pixels on upper and lower sensors.

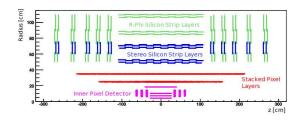
A successful correlation is identified as a stub.

- High p_T tracks can be identified if hits lie within a search window in r- ϕ (rows).
- Assumes binary readout.
- Stubs from two separate p_T layers can be correlated to obtain tracklets.

Keep in mind

Correlation over a minimal number of rows (as well as columns) will permit a simpler and lower power correlation scheme.

Outline		Simulation 0●000	Single p _T Layer Performance				
		Detector Geometry					
Im	portant to per	form realistic	simulations including	material effects			


interactions etc. Modifications to the current CMS geometry software allows detailed simulations of events at SLHC based on **GEANT** (or a parametrised simplification of GEANT)

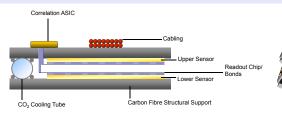
	Simulation O●OOO	Single p _T Layer Performance		
			Detector Geo	metry

Important to perform **realistic simulations** including material effects, interactions etc. Modifications to the current CMS geometry software allows detailed simulations of events at SLHC based on **GEANT** (or a parametrised simplification of GEANT)

Concept geometry

Opting for the more conservative two stack layer geometry to help characterise the triggering performance of a p_T layer.

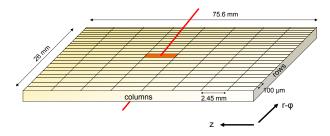
Full η coverage, layers as close as possible to IP without interfering with tracking.

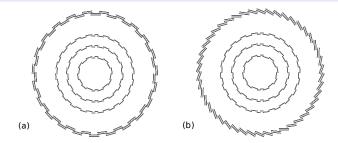

	Simulation 00●00	Single p _T Layer Performance		
			р _т М	odule

No definite design yet - more later this afternoon (G.Hall)

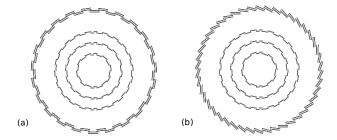
Concept design

A basic design for simulations including realistic estimates of material implemented.

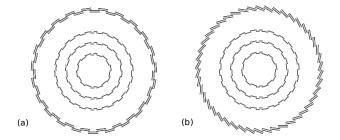

Includes provisions for cabling, cooling and structural support so that material interactions and impact on tracking performance is taken into account.


ıle

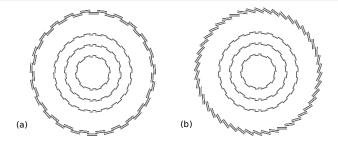
- r- ϕ pitch of less than 100 μm is unlikely while wider pixels reduce p_T discrimination ability.
- z pitch can be increased (macro-pixels) but lower limit is determined by luminous region; 2.45 mm for a sensor separation of 2 mm and layer radius of 25 cm. Occupancy remains less than 1%.


	Simulation 0000●	Single p _T Layer Performance		
			р _т М	odule

 Sensor Tilt - can reduce the effect of Lorentz drift hence smaller clusters...better correlation? lower data rates?


	Simulation 0000	Single p _T Layer Performance		
			р _т М	odule

- Sensor Tilt can reduce the effect of Lorentz drift hence smaller clusters...better correlation? lower data rates?
- Sensor Size wider sensors will complicate the correlation algorithm since offsets are needed near edges


	Simulation 00000	Single p _T Layer Performance		
			p _T M	odule

- Sensor Tilt can reduce the effect of Lorentz drift hence smaller clusters...better correlation? lower data rates?
- Sensor Size wider sensors will complicate the correlation algorithm since offsets are needed near edges
- Sensor Thickness thinner sensors could be also help reduce cluster size

Outline	Simulation 0000	Single p _T Layer Performance	Two Layer Performance	
			р _т М	odule
	 - 1 - 1			

- Sensor Tilt can reduce the effect of Lorentz drift hence smaller clusters...better correlation? lower data rates?
- Sensor Size wider sensors will complicate the correlation algorithm since offsets are needed near edges
- Sensor Thickness thinner sensors could be also help reduce cluster size
- Sensor Offsets can help match pixels in z at large η

Outline		Simulation 00000	Single p _T Layer Performance	Iwo Layer Performance	
				р _т М	odule
	Should also consid	,	e effect of Lorentz drift hen	ce smaller	

- Sensor Tilt can reduce the effect of Lorentz drift hence smaller clusters...better correlation? lower data rates?
- Sensor Size wider sensors will complicate the correlation algorithm since offsets are needed near edges
- Sensor Thickness thinner sensors could be also help reduce cluster size
- Sensor Offsets can help match pixels in z at large η

Only a selection of the results of these simulations will be shown in the following slides...

	Single p _T Layer Performance	

Introduction

Why do we need a tracking trigger? What is stacked tracking?

2 Simulation

Detector Modelling

3 Single p_T Layer Performance

- Sensor Separation vs. Correlation Window
- Tilted vs. Untilted Modules
- Occupancy

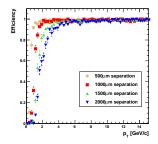
4 Two Layer Performance

- Track Reconstruction
- Efficiencies and Fake Rates
- Reconstruction Performance

5 Summary

 Introduction
 Single p_T Layer Performance
 Two Layer Performance
 Summary

 000
 000000
 000000
 000000


Sensor Separation vs. Correlation Window

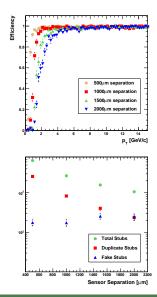
Single μ^{\pm} efficiencies

Sensor separation allows continuous selection of cut on track $\ensuremath{p_{\mathrm{T}}}$.

Increasing inter stack separation increases $\ensuremath{p_{\mathrm{T}}}$ threshold.

- Also increases transition region where tracks may or may not pass.
- Region width depends on pixel charge sharing, pitch, sensor thickness, sensor separation and the track impact point.

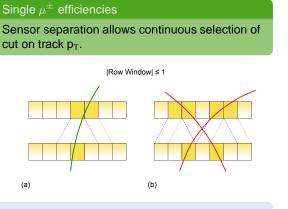
Sensor Separation vs. Correlation Window

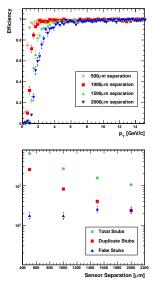

Single μ^{\pm} efficiencies

Sensor separation allows continuous selection of cut on track $\ensuremath{p_{\mathrm{T}}}$.

Increasing inter stack separation increases $\ensuremath{p_{\mathrm{T}}}$ threshold.

- Also increases transition region where tracks may or may not pass.
- Region width depends on pixel charge sharing, pitch, sensor thickness, sensor separation and the track impact point.


By increasing sensor separation, the p_T threshold is increased and fewer stubs are generated under SLHC pileup conditions.


 Outline
 Introduction
 Simulation
 Single pT Layer Performance
 Two Layer Performance
 Summary

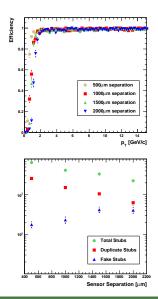
 000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 00000000
 0000000

Sensor Separation vs. Correlation Window

Without clustering, stubs may be duplicated (a). Incorrectly matched hits give rise to fakes (b).

 Outline
 Introduction
 Simulation
 Single pT Layer Performance
 Two Layer Performance
 Summary

 000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000


Sensor Separation vs. Correlation Window

Single μ^{\pm} efficiencies

Size of correlation window can also be adjusted. Allows discrete selection of cut on track p_T .

Window size is increased with sensor separation

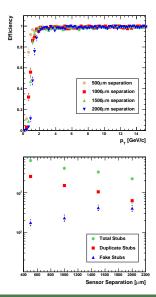
- Transition region width is minimised
- Efficiency is well defined above threshold.

 Introduction
 Single pT Layer Performance
 Two Layer Performance
 Summary

 000
 00000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 00000000

Sensor Separation vs. Correlation Window

Single μ^{\pm} efficiencies


Size of correlation window can also be adjusted. Allows discrete selection of cut on track p_T .

Window size is increased with sensor separation

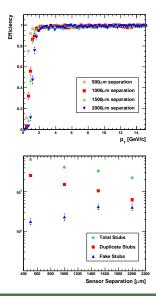
- Transition region width is minimised
- Efficiency is well defined above threshold.

But...

Increasing the correlation window size increases number of generated stubs and hence data rate under SLHC pileup conditions.

Sensor Separation vs. Correlation Window

Single μ^{\pm} efficiencies


Size of correlation window can also be adjusted. Allows discrete selection of cut on track p_T .

Window size is increased with sensor separation

- Transition region width is minimised
- Efficiency is well defined above threshold.

Even so,

an adjustable correlation window would be useful to change p_T cut (and control trigger data rate) during operation.

Sensor Separation vs. Correlation Window

Summary of a few results...

The table below highlights some of the important numbers from the simulations.

Sensor	Row	$\varepsilon_{ m muon}$	N _{Stubs}	Fake	Duplicate	Rate
Separation	Window	p _T >2 GeV/c				Reduction
(µm)	(pixels)	(%)		(%)	(%)	
1000	3	99.2	2670.5	6.6	30.9	22.0
1000	4	99.2	4150.9	5.6	36.6	14.2
2000	3	97.1	1054.1	23.3	22.4	54.4
2000	5	98.7	2248.3	18.1	28.0	25.5

 ε_{muon} describes the efficiency of all muon tracks reaching the stacked layer with p_T>2 GeV/c to generate a stub.

The **rate reduction** is the ratio of total number of hit pixels to number of generated stubs.

Sensor Separation vs. Correlation Window

Summary of a few results...

The table below highlights some of the important numbers from the simulations.

Sensor	Row	$\varepsilon_{ m muon}$	N _{Stubs}	Fake	Duplicate	Rate
Separation	Window	p _T >2 GeV/c				Reduction
(µm)	(pixels)	(%)		(%)	(%)	
1000	3	99.2	2670.5	6.6	30.9	22.0
1000	4	99.2	4150.9	5.6	36.6	14.2
2000	3	97.1	1054.1	23.3	22.4	54.4
2000	5	98.7	2248.3	18.1	28.0	25.5

 ε_{muon} describes the efficiency of all muon tracks reaching the stacked layer with p_T>2 GeV/c to generate a stub.

The **rate reduction** is the ratio of total number of hit pixels to number of generated stubs.

Sensor Separation vs. Correlation Window

Summary of a few results...

The table below highlights some of the important numbers from the simulations.

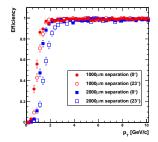
Sensor	Row	$\varepsilon_{ m muon}$	N _{Stubs}	Fake	Duplicate	Rate
Separation	Window	$p_T > 2 GeV/c$				Reduction
(µm)	(pixels)	(%)		(%)	(%)	
1000	3	99.2	2670.5	6.6	30.9	22.0
1000	4	99.2	4150.9	5.6	36.6	14.2
2000	3	97.1	1054.1	23.3	22.4	54.4
2000	5	98.7	2248.3	18.1	28.0	25.5

 ε_{muon} describes the efficiency of all muon tracks reaching the stacked layer with p_T>2 GeV/c to generate a stub.

The **rate reduction** is the ratio of total number of hit pixels to number of generated stubs.

 Outline
 Introduction
 Simulation
 Single p_T Layer Performance
 Two Layer Performance

 000
 00000
 000000
 000000
 000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 00000000
 0000000
 0000000

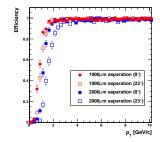

Tilted vs. Untilted Modules

Effect of sensor tilt

Sensors can be tilted to reduce Lorentz drift and minimise cluster size.

Tilting sensors also increases transition width

- Correlation induces small track charge bias.
- Effect can be reduced by adjusting correlation window.


Tilted vs. Untilted Modules

Effect of sensor tilt

Sensors can be tilted to reduce Lorentz drift and minimise cluster size.

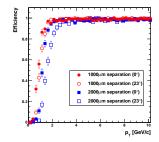
Tilting sensors also increases transition width

- Correlation induces small track charge bias.
- Effect can be reduced by adjusting correlation window.

Sensor	Row	$\varepsilon_{\mathrm{Muon}}$	N _{Stubs}	Fake	Duplicate	Rate
Separation	Window	p _T >2 GeV/c				Reduction
(μm)	(pixels)	(%)		(%)	(%)	
2000	3	89.0	317.7	37.0	18.0	150.2
2000	5	98.1	1429.2	20.6	20.5	33.4

 Outline
 Introduction
 Simulation
 Single pr Layer Performance
 Two Layer Performance
 Summary

 000
 00000
 00000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 0000000


Tilted vs. Untilted Modules

Effect of sensor tilt

Sensors can be tilted to reduce Lorentz drift and minimise cluster size.

Tilting sensors also increases transition width

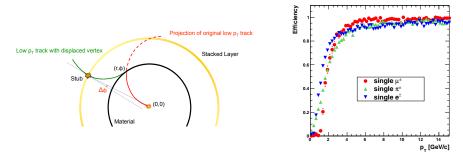
- Correlation induces small track charge bias.
- Effect can be reduced by adjusting correlation window.

Untilted sensors probably better...

Unless lowest possible rate is of extreme importance, an untilted layout should be easier to implement.

- Less complex mechanics, correlation over fewer pixels.
- Offers better hit position resolution for higher level track reconstruction.
- Basic clustering on trigger data to eliminate duplicates could be possible.

	Single p _T Layer Performance ○○○○●○○	
	F	


Pions, Electrons...

Single π^{\pm} , e^{\pm} efficiencies

p_T resolution worsens for interacting particles

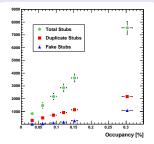
Inner tracker material contributes to mis-measurement of transverse momentum.

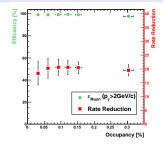
- Low p_T tracks come from secondary interactions with displaced vertex.
- High p_T electrons can radiate in material so p_T at the stack is lower.

utline Intro

Simulatio

Single p_T Layer Performance


Minimum Bias Pileup


Effect of occupancy

Important to ensure correlation algorithm is robust to the range of occupancies possible at SLHC.

Simulations so far indicate that a stacked layer could operate,

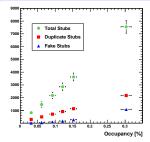
- Efficiently up to an occupancy of at least 0.3%.
- With a fairly consistent rate reduction.

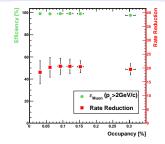
utline Intro

Simulatio

Single p_T Layer Performance

Minimum Bias Pileup


Effect of occupancy


Important to ensure correlation algorithm is robust to the range of occupancies possible at SLHC.

Simulations so far indicate that a stacked layer could operate,

- Efficiently up to an occupancy of at least 0.3%.
- With a fairly consistent rate reduction.

Requires further simulations for occupancies up to worst case.

Simulatio

Single p_T Layer Performance

Two Layer Performance

Summary

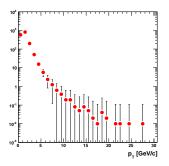
Single Layer Summary

Simulations show that a stacked layer could discriminate against low $\ensuremath{p_{\mathrm{T}}}$ tracks

- Efficiently (better than 90%) up to an occupancy of at least 0.3%.
- With an adequate data rate reduction of \sim 20.

For better operation,

- Sensors should be untilted and would benefit from simple clustering (preferably on detector).
- Material before the stacked layers should be minimised.


Single Layer Summary

Simulations show that a stacked layer could discriminate against low $p_{\rm T}$ tracks

- Efficiently (better than 90%) up to an occupancy of at least 0.3%.
- With an adequate data rate reduction of \sim 20.

For better operation,

- Sensors should be untilted and would benefit from simple clustering (preferably on detector).
- Material before the stacked layers should be minimised.

However,

A single stacked pixel layer with such a rate reduction would not be useful for a L1 trigger. With over 1000 stubs per event, every trigger tower would be matched to a tracker stub due to poor stub vector resolution. Stub p_T spectrum indicates why.

	Single p_{T} Layer Performance	Two Layer Performance	

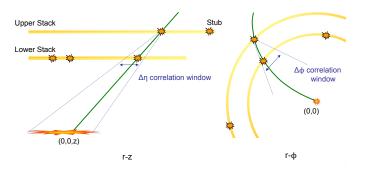
Introduction

Why do we need a tracking trigger? What is stacked tracking?

2 Simulation

Detector Modelling

3 Single p_T Layer Performance


- Sensor Separation vs. Correlation Window
- Tilted vs. Untilted Modules
- Occupancy

4 Two Layer Performance

- Track Reconstruction
- Efficiencies and Fake Rates
- Reconstruction Performance

5 Summary

			Single p _T Layer Performance	Two Layer Performance ●○○○○○	
				Corre	lation
Us	sing two stack	ed layers			
	orrelate stubs i f-detector.	in upper layer	with stubs in lower laye	er to form tracklets	

Outline	Introduction	Simulation 00000	Single p _T Layer Performance	Two Layer Performance ●○○○○○	Summary
				Corre	ation
Us	ing two stack	ed layers			
	rrelate stubs -detector.	in upper layer	r with stubs in lower la	yer to form tracklets	
	Upper Stack		Stub		
	Lower Stack		correlation window	Δφ correlation window	

 $_{(0,0,z)}^{(0,0,z)}$ r-z Apply a cut in $\Delta\eta$ large enough to account

Apply a cut in $\Delta \phi$ large enough to allow for low p_T tracks and multiple scattering.

r-φ

(0,0)

for vertex smearing.

	Two Layer Performance ●○○○○○	Single p _T Layer Performance		
elation	Corr			

Using two stacked layers

Correlate stubs in upper layer with stubs in lower layer to form tracklets off-detector.

then...

Track transverse momentum can be measured - assuming(x,y) interaction vertex is (0,0).

$$p_{\rm T} = \frac{0.6\sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\Delta\phi)}}{\sin(\Delta\phi)}$$
(1)

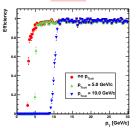
where r_1 and r_2 are the radii in metres of the inner stack layer and outer stack layer respectively and $\Delta \phi$ is the angular separation in ϕ between the two stubs. p_T is in GeV/c.

			Single p _T Layer Performance	Two Layer Performance ○●O○○○	
				Effic	ciency
Si	nale μ^{\pm} π^{\pm} e	e [±] efficiencie:	8		

After calculating track transverse momentum, a secondary $\ensuremath{p_{\mathrm{T}}}$ cut can be applied.

Flexibility in choice of p_T threshold in L1 firmware

 Can be trigger algorithm specific when matching to other subdetectors, e.g. electrons

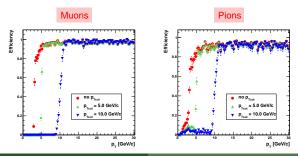

			Single p _T Layer Performance	Two Layer Performance ○●○○○○	
				Effic	ciency
Sir	ngle μ^\pm , π^\pm , ϵ	e^{\pm} efficiencies	S		

After calculating track transverse momentum, a secondary $p_{\rm T}$ cut can be applied.

Flexibility in choice of p_T threshold in L1 firmware

 Can be trigger algorithm specific when matching to other subdetectors, e.g. electrons

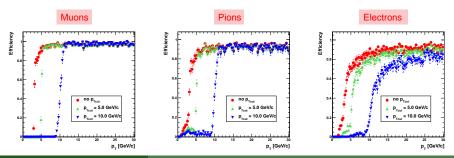
Muons


Mark Pesaresi (IC-CMS)

			Single p _T Layer Performance	Two Layer Performance ○●○○○○	
				Effic	ciency
Sin	ngle μ^\pm,π^\pm,ϵ	e^{\pm} efficiencies			

After calculating track transverse momentum, a secondary p_T cut can be applied.

Flexibility in choice of p_T threshold in L1 firmware


 Can be trigger algorithm specific when matching to other subdetectors, e.g. electrons

			Single p _T Layer Performance	Two Layer Performance ○●○○○○	
				Effic	ciency
Si	ngle $\mu^{\pm},\pi^{\pm},\epsilon$	e^{\pm} efficiencies	S		
	ter calculating plied.	track transve	rse momentum, a secor	ndary p_T cut can be	

Flexibility in choice of p_T threshold in L1 firmware

 Can be trigger algorithm specific when matching to other subdetectors, e.g. electrons

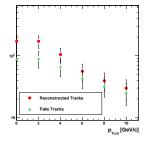
Mark Pesaresi (IC-CMS)

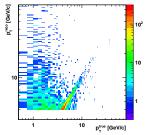
Outline		Single p _T Layer Performance	Two Layer Performance ○O●○○○	
			Fake	Rate

Combinatorial fakes

Matching uncorrelated stubs in each layer to form tracklets with random $p_{\rm T}$.

Dependent on occupancy, layer correlation windows and inter-stack correlation window.


• ~25 fake tracks per event after a 10 GeV/c p_T cut.


Mis-reconstructed fakes

Measurement of p_T is over-estimated due to secondary displaced vertices.

Irreducible without a third point in the reconstruction.

• ~2 fake tracks per event after a 10 GeV/c p_T cut.

Outl	

Simul

Single p_T Layer Performance

Two Layer Performance

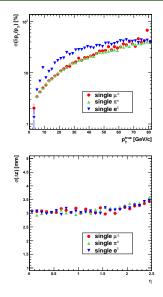
Summary

Track Reconstruction

p_T resolution

Track p_T resolution using two stack plus assumed beam spot worsens with p_T .

Performance is reasonable,


- \sim 20% for pions and muons up to 50 GeV/c.
- Slightly worse for electrons.

z vertex resolution

Track z vertex resolution is constant with η .

Primary vertex hard to identify,

- A 3 mm resolution would include over 3 vertices every crossing.
- Determined by the pixel pitch in z.

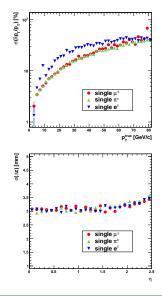
00

Simulatio

Single p_T Layer Performance

Two Layer Performance

Summary


Track Reconstruction

p_T resolution

Transverse momentum measurement could be used for E_T/p_T cut. Increasing distance between layers would improve p_T resolution.

z vertex resolution

Can be improved by bringing the layers closer to the IP. May be enough to identify a region of interest for combined trigger vertex cuts.

Outline

Simu

Single p_T Layer Performance

Two Layer Performance

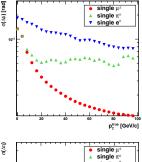
Summary

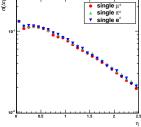
Track Reconstruction

$\Delta \phi$ resolution at ECAL

At the Electromagnetic Calorimeter surface, phi track resolution is better than a trigger tower.

Important so that matching of track candidates is similar to that of calorimeter trigger objects.


- ~0.02 compared to the L1 ECAL trigger tower of $\Delta\phi{=}0.087$
- Worse for electrons and pions than muons.


$\Delta\eta$ resolution at ECAL

At the ECAL surface, eta track resolution is worse than that of a trigger tower.

But resolution is still less than two trigger towers,

- Improves with increasing η
- Similar performance for all particles.

	Single p_{T} Layer Performance	Summary

Introduction

Why do we need a tracking trigger? What is stacked tracking?

2 Simulation

Detector Modelling

3 Single p_T Layer Performance

- Sensor Separation vs. Correlation Window
- Tilted vs. Untilted Modules
- Occupancy

4 Two Layer Performance

- Track Reconstruction
- Efficiencies and Fake Rates
- Reconstruction Performance

5 Summary

Outline	Introduction	Simulation 00000	Single p _T Layer Performance	Two Layer Performance	Summary
				Sum	nmary
	software package On detector h Effects such when defining	e. The layer i hit correlation is as Lorentz drif g the layer, e.g	een implemented within s also configurable. It h s a non trivial process. t, multiple scattering etc. a . tilting the sensors to redu ithm complexity.	as demonstrated tha	ions
	• • •	•	ood and demonstrates t probably not viable for a	•	
	• •	-	timate of the track p_T , than 20% for $p_T < 20 \text{ GeV}$	/c.	

- Track $\Delta \phi$ and $\Delta \eta$ resolutions for matching to ECAL trigger objects is sufficient.
- Fake background appears to be under control.

Matching with other subdetector primitives for viable L1 triggers remains to be demonstrated.

Mark Pesaresi (IC-CMS)