Introduction	CMS 0000	QCD and Jets	Electroweak Bosons	Top Physics o	Conclusion

High p_T EWK and QCD in CMS Preliminary measurements at $\sqrt{s} = 7$ TeV

Anne-Marie Magnan Imperial College London

21/09/2010 — ISMD 2010 — Antwerp, Belgium

Introduction ●○	CMS 0000	QCD and Jets	Electroweak Bosons	Top Physics ○	Conclusion	
Outline						

Introduction

- The Compact Muon Solenoid Experiment
 - The CMS Detector
 - Leptons and Jets Reconstruction
- QCD and Jets
 - Inclusive Jet Analysis
 - Dijet mass Spectrum
 - 3-jet to 2-jet Ratio
- 4
- Electroweak Bosons

 W[±]
- Z
- Top Physics
- Conclusion

Introduction	CMS	QCD and Jets	Electroweak Bosons	Top Physics	Conclusion
00					

QCD and EWK in Proton-Proton Physics at 7 TeV

Test further perturbative QCD and the Standard Model

- e.g. measure α_s, PDF. Larger phase-space accessible.
- characterise better gluon and heavy-flavours : gg processes much more important than at Tevatron.
- study impact of non-perturbative effects: e.g. underlying event, multi-parton interactions, hadronisation. More data ⇒ better modelling.
- → importance of Collinear- and IR-safe jet algorithms.

Commissioning of detector and objects:

- dijet, γ+jets balance ⇒ measure jet energy scale and resolution
- ♥ W,Z candles ⇒ calibrate EM response

Backgrounds to new physics:

- "QCD" multijet background, W/Z+jets, *tt*, γ+X
- fine-tuning of MC required.
- NLO/NNLO calculations required.

A.-M. Magnan, IC London

High p_T EWK and QCD at CMS

Jet and MET Reconstruction in CMS Different inputs ⇒ cross-check of systematics

- Standard jet reconstruction: collinear and IR safe anti-k_T clustering algorithm, size 0.5 or 0.7.
- Four different jet types, leading to three different MET types:

PFJets and PFMET

 clustering starts from a list of "identified particles"

Purely Track-based

track jets

A.-M. Magnan, IC London

High p_T EWK and QCD at CMS

ISMD 2010, 21/09/2010 5 / 19

A.-M. Magnan, IC London

High p_T EWK and QCD at CMS

ISMD 2010, 21/09/2010 6 / 19

E_T [GeV]

Leptons, Jets and MET: an extract of performance results

Lepton isolation, based on $\sum p_{T_{trk}}$, $\sum E_{T_{ECAL}}$, $\sum E_{T_{HCAL}}$ in $\Delta R = 0.3$ cone around the lepton. Relative+combined for μ analysis, absolute for e analysis.

- Electron identification: cut-based, using cluster width and track-cluster matching. Tight (loose) selection: eff = 75%(90%).
- Muon identification: cut-based, good consistency between tracker and muon chambers.

A.-M. Magnan, IC London

u'u: mass (GeV/c²

Introduction	CMS 0000	QCD and Jets	Electroweak Bosons	Top Physics o	Conclusion	

Inclusive Jet Analysis : the Method

- Calo, JPT and PF Jets: cross-check of systematics
- Beam background + noise cleaning
- Minimum bias + single jet triggers
- 6 rapidity regions 0 < |y| < 3

Unfolding Method (DØ Ansatz fit)

A.-M. Magnan, IC London

High p_T EWK and QCD at CMS

ISMD 2010, 21/09/2010 8 / 19

Inclusive Jet Analysis : the Results Comparison between 3 algorithms: systematics well under control.

JPT jets

PF jets

Data/Theory for 0.5 < |y| < 1

2 < |y| < 2.5

A.-M. Magnan, IC London

High p_T EWK and QCD at CMS

A.-M. Magnan, IC London

High p_T EWK and QCD at CMS

ISMD 2010, 21/09/2010 10 / 19

3-jet to 2	liet cro	ee-section r	atio	, and the second		
Introduction	CMS	QCD and Jets	Electroweak Bosons	Top Physics	Conclusion	

Good agreement with MC within uncertainties

- Ratio: eliminate JES and luminosity uncertainty.
- Selection: |y| < 2.5, $\epsilon_{trig} > 0.99 \Rightarrow p_T > 50$ GeV.
- Total transverse Jet Energy: $0.2 < H_T < 1.0$ TeV.
- $R_{32} = \frac{d\sigma_3/dH_T}{d\sigma_2/dH_T}$, plateau sensitive to α_S .

Introduction	CMS	QCD and Jets	Electroweak Bosons	Top Physics	Conclusion	
			• 00 00			

W[±] and Z Analyses - Global picture

Selection

- Trigger $E_T > 9$ (15) GeV, $p_T > 20$ GeV, $|\eta| < 2.1(2.5)$ for μ (e)
- W (Z): Tight (loose) isolation and identification requirements
- W analyses: veto 2nd μ (e) p_T > 10(20) GeV

Transverse Mass for $W \rightarrow e\nu$ and $W \rightarrow \mu\nu$

- W yield: binned likelihood fit to M_T distribution
- Z yield: number of events in 60 < M_{ee} < 120 GeV (bkg negligible)
- QCD background shape: data-driven, based on inverted isolation.
- EWK+signal shape: MC
- Full analysis: 0.198 pb⁻¹. Latest mass distributions: 1.1 pb⁻¹.

Lepton charge asymmetry

- pp collisions: $u >> d \Rightarrow W^+ > W^-$, sensitive to PDFs.
- $A(\eta) = \frac{d\sigma^+/d\eta d\sigma^-/d\eta}{d\sigma^+/d\eta + d\sigma^-/d\eta}$, SM predictions $\Rightarrow A(\eta) \simeq 0.2$
- Raw measurement: without e/μ acceptance corrections.
- With O(10 pb⁻¹), $\sigma(A) \simeq 0.03 \Leftrightarrow 0.04$ PDF variations.

- PF Jets $|\eta| < 2.5, \Delta R(jet lepton) > 0.5$
- MC signal and backgrounds normalised to MCFM NLO cross-sections.
- Inclusive rates: $N(W + \ge n jets)$ and ratio: $\frac{N(W + \ge n jets)}{N(W + > (n-1) jets)}$
- Two jet E_T threshold analysed: 15 and 30 GeV.

A.-M. Magnan, IC London

High p_T EWK and QCD at CMS

Introduction	CMS	QCD and Jets	Electroweak Bosons	Top Physics	Conclusion	
			00000			

Z cross-section and W/Z ratios

Z cross-sections and W/Z ratio

A.-M. Magnan, IC London

High p_T EWK and QCD at CMS

Introduction	CMS 0000	QCD and Jets	Electroweak Bosons	Top Physics O	Conclusion	
First Taus	; !					

Study of $\tau_{had} + \mu$ final state

- 3 PF-based algorithms, one track-corrected, based on signal vs isolation cones.
- Main backgrounds: QCD, W.
- Exp. efficiency (MC): 60% for $p_{\tau}^{vis} > 50$ GeV.

Fake rate (data 8.4 nb⁻¹) $\simeq 10^{-2}$. ٠

 $\rightarrow \tau v$

Visible mass of the $Z \rightarrow \mu \tau$ candidates, $p_{\tau}^{\mu} > 15 \text{ GeV}, p_{\tau}^{\tau} > 20$

GeV

Introduction	CMS	QCD and Jets	Electroweak Bosons	Top Physics	Conclusion
				•	

Top Measurements in One Slide A complete exercise demonstrating excellent detector performance

00	0000	0000	00000	0	•0	
00	0000	0000	00000	0	•0	
Introduction	CMS	QCD and Jets	Electroweak Bosons	Top Physics	Conclusion	

- Standard Model predictions confirmed at 7 TeV within current statistical and experimental uncertainties.
- CMS is delivering very good quality data: commissioning of the detectors well under way.
- Era of MC tuning has started: O(30) pb⁻¹ of integrated luminosity by Christmas.
- Era of precision measurements: O(1) fb⁻¹ in 2011.
- CMS is also getting ready for Heavy Ion collisions in November.
- More CMS results:
 - P. Katsas, Wednesday 12:10 "Studies of QCD jet production with the CMS detector in pp collisions at \sqrt{s} = 7 TeV"
 - X. Janssen, Wednesday 19:40 "Measurements of two-particle correlations in pp collisions with the CMS detector"
 - D. Piparo, Wednesday 20:50 "Measurements of Hadron Production and Underlying Event Studies at CMS"
 - D. S. Cerci, Thursday 11:20 "Forward energy and particle flow with CMS"
 - L. Benucci, Saturday 10:35 "Searches for physics beyond the Standard Model with CMS"

$t\bar{t} \rightarrow e + jets$ Candidate in Image

Special thanks to the LHC machine for working so smashingly well.

BACKUPS

A.-M. Magnan, IC London

High p_T EWK and QCD at CMS

ISMD 2010, 21/09/2010 20/19

Collisions	рр		Heav	/ ions
Parameter	Start-up	Nominal	Start-up	Nominal
Energy/nucleon (TeV)	5	7	2.76	2.76
Luminosity (cm ⁻² s ⁻¹)	10 ³¹ -10 ³²	10 ³⁴	$5 imes 10^{25}$	10 ²⁷
Bunch separation (ns)	25-50-75	25	1350	99.8
No. of bunches	43/156/936-2808	2808	62	592
particles/bunch	$0.5 imes 10^{11}$	$1.15 imes 10^{11}$	$7.0 imes10^7$	$7.0 imes 10^{7}$
β -value at IP (m)	1-3	0.55	1.	0.5-0.55
RMS beam radius at IP (μ m)	16.7	16.7	15.9	15.9
Luminosity lifetime (hour)	15	15	14/7.5/5.5	8/4.5/3
Collisions/crossing	≥3	\simeq 20	-	-

PDF and α_S measurements

- Momentum fraction $x = \frac{M}{\sqrt{s}} \times e^{\pm y}$,
- Scale Q = Mass (dijet,Z,W,H,...),
- QCD factorisation theorem: fits to the inclusive jet cross-sections ⇒ PDF,
- Theoretical uncertainties due to factorisation and renormalisation scales,
- Test of DGLAP equations thanks to large range in Q²,

• $\frac{\sigma(X+jet)}{\sigma(X)} \propto \alpha_S$

The CMS calorimeters

×

● EM : |η| < 3,</p>

- PbWO₄ cristals,
- 24.7-25.8 X_o, 1.1 λ,
- 1 longitudinal section + preshower (3 X_o),
- $\Delta \eta \times \Delta \Phi = 0.0175 \times 0.0175$,
- $\sigma/E \simeq 2 5\%/\sqrt{E}$.
- HCAL : $|\eta| < 3$,
 - Brass/Scintillator sampling calorimeter,
 - 6-10 λ
 - 2 longitudinal sections + Outer HCAL (3 λ for |η| < 1.4)</p>
 - $\Delta \eta \times \Delta \Phi \ge 0.0875 \times 0.0875$,
 - $\sigma/E \simeq 100\%/\sqrt{E} \oplus 0.05.$

• HF : $3 < |\eta| < 5$,

- Fe/Quartz fibers, Cerenlov light
- EM 90 X_o, HAD 9.5 λ
- 1 EM + 1 HAD longitudinal sections

Relative JEC: dijet p⊤ balance

Relative JEC removes jet response variation in η A priori estimate of uncertainty: $\pm 2\% x |\eta|$

Inclusive Jet Analysis : Theoretical uncertainties

A.-M. Magnan, IC London

High p_T EWK and QCD at CMS

Systematic uncertainties on W cross-section

- · Efficiencies and scales studied in Z events and recoil studies
- Background uncertainties from cut inversion studies and control samples
- PDF uncertainties evaluated via CTEQ66, MSTW08NLO, NNPDF2.0 sets

Source	W → μν (%)	W → ev (%)
Lepton reconstruction	3.0	6.1
Trigger Efficiency	3.2	0.6
Isolation Efficiency	0.5	1.1
Momentum/energy scale	1.0	2.7
MET scale and resolution	1.0	1.4
Background subtraction	3.5	2.2
PDF uncertainty in acceptance	2.0	2.0
Other theoretical uncertainties	1.4	1.3
Total systematic error	6.3	7.7
Luminosity uncertainty	11.0	11.0

×

Systematic uncertainties on Z cross-section

Source	Z → μμ (%)	Z → ee (%)
Lepton reconstruction	2.5	7.2
Trigger Efficiency	0.7	-
Isolation Efficiency	1.0	1.2
Momentum/energy scale	0.5	-
PDF uncertainty in acceptance	2.0	2.0
Other theoretical uncertainties	1.6	1.3
Total systematic error	3.8	7.7
Luminosity uncertainty	11.0	11.0

W events leading to cross-section measurement

×

~

Z events leading to cross-section measurement

A.-M. Magnan, IC London

High p_T EWK and QCD at CMS

ISMD 2010, 21/09/2010 33/19

W cross-section by charge

*

Cross-sections

Top-quark pair-production: influence of pile-up

*

×

Table 1: Event yields (from simulation) for signal and background contributions, compared to the number of events in 0.84 ± 0.09 pb⁻¹ of 7 TeV collision data. Also shown are the data driven background estimates. The event selection includes the requirements of two opposite sign, high-pt, isolated leptons, the Z-boson veto, and N(ets) > 1, but no requirement of missing transverse energy. For details, e.g. on the event selection or the systematic uncertainties included in this table, see the description in <u>CMS-PAS-TOP-10.04</u>.

Sample	ee	μμ	еµ	
Dilepton tt	$0.63 \pm 0.09 {\pm} 0.12$	$0.70 \pm 0.11 \pm 0.13$	$1.70 \pm 0.26 \pm 0.32$	
VV	0.05 ± 0.03	0.05 ± 0.03	0.12 ± 0.06	
Single top - tW	0.04 ± 0.02	0.05 ± 0.03	0.12 ± 0.06	
Drell-Yan $\tau\tau$	0.08 ± 0.04	0.13 ± 0.07	0.19 ± 0.09	
Drell-Yan ee, µµ	4.2 ± 1.1	5.0 ± 1.2	0.04 ± 0.02	
Non-dilepton tt	0.02 ± 0.01	0.003 ± 0.002	0.03 ± 0.02	
W+jets	0.06 ± 0.03	0.000 + 0.002 - 0.000	0.07 ± 0.04	
QCD multijets	0 + 10 - 0	0 + 10 - 0	0^{+10}_{-0}	
Total simulated	5.1 ± 1.1	5.9 ± 1.2	2.3 ± 0.4	
QCD data-driven	0.0 + 0.1 + 0.1 - 0.0 - 0.0	$0.0 \begin{array}{c} +0.2 \\ -0.0 \end{array} \begin{array}{c} +0.2 \\ -0.0 \end{array}$	0.0 + 0.1 + 0.1 - 0.0	
W+jets data-driven	0.2 + 0.2 + 0.1 - 0.0	0.0 + 0.4 + 0.2 - 0.0	0.0 + 0.4 + 0.2 - 0.0	
Drell-Yan data-driven	$3.6\pm0.6\pm1.8$	$4.3 \pm 0.7 \pm 2.1$	N/A	
Data	6	6	2	

Table 2: Event yields (from simulation) for signal and background contributions for the e+jets channel, compared to the number of events in 0.84 ± 0.09 pb⁻¹ of 7 TeV collision data. For details, e.g. on the event selection or the uncertainties included in this table, see the description in CMS-PAS-TOP-10-004.

Jet multiplicity	ttbar	single top	W+jets	Z+jets	QCD	Sum MC	Data
N _{jets} ≥ 0	12 ± 2	3.4 ± 0.4	2619 ± 317	180 ± 21	658 ± 73	3472 ± 326	3434
N _{jets} ≥ 1	12 ± 2	3.1 ± 0.4	419 ± 77	92 ± 11	436 ± 62	962 ± 99	1022
N _{jets} ≥ 2	11 ± 2	1.9 ± 0.3	74 ± 18	19 ± 5	85 ± 22	191 ± 29	183
$N_{jets} \ge 3$	8.9 ± 1.8	0.70 ± 0.14	13 ± 4	3.3 ± 1.0	14 ± 5	40 ± 7	43
N _{jets} ≥4	4.8 ± 1.2	0.21 ± 0.06	2.6 ± 1.1	0.60 ± 0.23	2.3 ± 1.1	11 ± 2	13

Table 2: Event yields (from simulation) for signal and background contributions for the µ+jets, compared to the number of events in 0.84 ± 0.09 pb⁻¹ of 7 TeV collision data. For details, e.g. on the event selection or the uncertainties included in this table, see the description in CMS-PAS-TOP-10-004.

Jet multiplicity	ttbar	single top	W+jets	Z+jets	QCD	Sum MC	Data
N _{jets} ≥ 0	13 ± 3	4.2 ± 0.4	3708 ± 448	192 ± 29	223 ± 25	4140 ± 450	4142
N _{jets} ≥1	13 ± 3	3.9 ± 0.4	552 ± 106	42 ± 12	79 ± 17	690 ± 108	789
N _{jets} ≥ 2	13 ± 2	2.3 ± 0.3	92 ± 24	7.1 ± 4.4	10 ± 3	124 ± 25	153
N _{jets} ≥3	10 ± 2	0.82 ± 0.15	16 ± 5	1.3 ± 0.9	1.3 ± 0.5	29 ± 5	40
N _{jets} ≥4	5.6 ± 1.4	0.24 ± 0.06	3.1 ± 1.2	0.25 ± 0.18	0.15 ± 0.07	9.3 ±1.9	11