

- Jet Physics
- **Top Physics**
- **Direct Photon Production**
- Summary

Electroweak: Z / W in lepton channels

Inclusive production of $W \pm$ and Z bosons is a high cross section process:

o total σ predicted with ~4% uncert (mainly PDF)

- $\times \sigma_{NNLO}(W^+ \rightarrow \ell^+ \nu)$ = 6.16 nb
- $= \sigma_{\text{NNLO}}(W^- \rightarrow \ell^- v) = 4.30 \text{ nb}$

= 0.96 nb

 $\times \sigma_{\text{NNLO}}(\mathbb{Z}/\gamma * \rightarrow \ell \ell)$ $\sqrt{s} = 7$ TeV, calculated with FEWZ using MSTW 2008 **NNLO PDFs**

• MC Samples:

- × Pythia using MRSTLO* and fully simulated GEANT4, Scaled using WCD NNLO prediction by FEWZ
- W/Z Measurements in the electron and muon channels are important:

• Identification and calibration of the first sample of isolated high- p_{T} leptons

 \circ Missing E_T studies

o Z mass precisely known:

- \times Commissioning and calibration $Z/\gamma * \rightarrow \ell\ell$
- × Calo/muon energy scale/uniformity
- × Determination of trigger efficiencies

• Precise tests of QCD in unexplored regions

 \times ~100 pb⁻¹, can start to constrain parton density functions in proton

Lepton Reconstruction

• Electrons:

• Loose preselection:

EM calorimeter 2nd layer sampling shapes and hadronic leakage.

- × 94%eff
- × 20 GeV Rejection factor against jets: 1100
- o Medium (Z → ee):

Loose + calorimeter shape in 1st sampling , Silicon hits and impact parameter, track-cluster matching

- × 90%eff.
- × 20 GeV Rejection factor against jets: 6800
- o Tight (W → ev) :

Medium + b-layer hit and TRT high threshold hits, conversion rejection, E/p matching

× 72%eff.

 \times 20 GeV Rejection factor against jets: 92000

• Muons:

- Combined muon |η| < 2.4: muon spectrometer (MS) + inner detector (ID) track
 - \times p_T > 10 GeV, Eff 94%
- ${\rm \circ}$ Decays in flight, cosmics and other background reduced by $p_{\rm T}$ and spacial matching cuts between MS and ID

$$\sigma_{W} \times BR(W \rightarrow l\nu) = \frac{N_{W}^{obs} - N^{bck}}{A_{W}C_{W}L_{int}}$$

• A_W : Geometrical acceptance • e^+ : 0.466 ± 0.03 • e^- : 0.457 ± 0.03 • μ^+ : 0.484 ± 0.03 • μ^- : 0.475 ± 0.03

 $\cdot C_W$: Correction factor. Ratio between number of signal events which pass the final selection requirements after reconstruction and the total number of events generated.

•e: 0.66 ± 0.08 • μ : 0.81 ± 0.07 • L_{int} Integrated luminosity

Integrated luminosity: 17 nb⁻¹ Analysis with updated luminosity ongoing

Alejandro Alonso, ISMD2010, 21 September 2

 $\sigma_{tot}(W^+)[5.7 \pm 0.7(stat) \pm 0.4 (syst) \pm 0.6 (lumi)] nb$ $\sigma_{tot}(W^-)[3.5 \pm 0.5(stat) \pm 0.2 (syst) \pm 0.4 (lumi)] nb$

 $\sigma_{tot}(W \rightarrow lv)[9.3 \pm 0.9(stat) \pm 0.6 (syst) \pm 1.0 (lumi)] nb$ $\sigma_{NNLO}(W \rightarrow lv) = [10.46 \pm 0.42] nb$

- W⁺ and W⁻ are produced at different rates
- The measurement will provide important constraints on PDFs:
 - Constrains u/d quark ratio in proton, perform as function of η_l (correlated to parton momentum fraction x)
- Many uncertainties cancel fully (luminosity) or partially (lepton efficiency)
- The asymmetry is expected to be different from zero and increase with $\boldsymbol{\eta}$
- The uncertainties for the W charge asymmetry at 16.9 nb-1 are statistically dominated.

Jet Physics

- Dominant process with high p_T final state
- Hard interaction of quarks and gluons leading to di-jet and multijet events
- Important tool to understand strong interaction and new physics search
- o Jets measured/reconstructed in calorimeters
 - Critical to understand response-energy scale and resolution
- Interesting sensitivity already:
 - × Di-jet resonance, see Haiping Peng talk

Jet reconstruction in ATLAS

• Jets:

Anti-k_t algorithm, with radius 0.6(0.4)
Topoclusters used as input:

 \times 3D objects with E_{cell} > 4 σ above noise. Neighbors cells with E_{cell} > 2 σ are added

• Event selection:

o "Good" data quality

• Reconstructed primary vertex

• Trigger:

× MBTS

× Calo Trigger: L1_J5

• ~1 pb⁻¹

• Jet Selection and calibration:

o Rapidity: |y|<2.8

o p_{T1} > 60 GeV

- Momenta are calculated in the detector frame and then corrected according to the primary vertex
- o Calorimeter clean cuts
- Jet Energy Scale (JES) used to convert EM calibration to calibrated hadronic scale.
 - \times p_T, jet and y dependent

Belative JES Systematic Uncertainty 91.0 Belative JES Systematic Uncertainty 90.0 Belative JES Systematic Uncertainty	AntiK, R=0.6, JES Calibration, 0.3 <hr/> Monte Carlo QCD jets Underlying event (PYTHIA, Perugia0) ALPGEN, Herwig, Jimmy Additional Dead Material Hadronic Shower Model Noise Thresholds JES calibration non-closure Total JES Uncertainty ATLAS Preliminary ATLAS Preliminary and a structure a
£ ^{0.22}	AntiK, R=0.6, JES Calibration, 2.1<ηI<2.8
2.0 tai	Monte Carlo QCD jets, Data 2010
ষ্ট 0.18	Underlying event (PYTHIA, Perugia0) Fragmentation (PYTHIA, Professor)

ALPGEN Herwig Jimmy

Shifted Beam Spot

Jet reconstruction in ATLAS

• Jets:

Anti-k_t algorithm, with radius 0.6(0.4)
Topoclusters used as input:

 $\frac{1}{2}$ 3D objects with E_{cell}> 4σ above noise. Neighbors cells with E_{cell}> 2σ are added

• Event selection:

o "Good" data quality

• Reconstructed primary vertex

• Trigger:

× MBTS

× Calo Trigger: L1_J5

• ~1 pb⁻¹

• Jet Selection and calibration:

o Rapidity: |y|<2.8

o p_{T1} > 60 GeV

• Momenta are calculated in the detector frame and then corrected according to the primary vertex

o Calorimeter clean cuts

• Jet Energy Scale (JES) used to convert EM calibration to calibrated hadronic scale.

 \times p_T, jet and y dependent

Top Rediscovery: Status @ 280 nb⁻¹

Top Rediscovery: Status @ 280 nb⁻¹

- 9 top candidates.
- Compatible with NLO

ID	Run	Event	Channel	p_T^{lep}	$E_{\rm T}^{\rm miss}$	m_T	$m_{\rm iii}$	#jets	#b-tagged
	number	number		(GeV)	(GeV)	(GeV)	(GeV)	$p_T > 20 \text{ GeV}$	jets
LJ1	158801	4645054	μ +jets	42.9	25.1	59.3	314	7	1
LJ2	158975	21437359	e+jets	41.4	89.3	68.7	106	4	1
LJ3	159086	12916278	e+jets	26.2	46.1	62.6	94	4	1
LJ4	159086	60469005	e+jets	39.1	66.7	102	231	4	1
LJ5	159086	64558586	e+jets	79.3	43.4	86.7	122	4	1
LJ6	159224	13396261	μ +jets	29.4	65.4	64.1	126	5	1
LJ7	159224	13560451	μ +jets	78.7	40.0	83.7	108	4	1

ID	Run	Event	Channel	p_T^{lep}	$E_{\mathrm{T}}^{\mathrm{miss}}$	H_T	#jets	#b-tagged
	number	number		(GeV)	(GeV)	(GeV)	$p_T > 20 \text{ GeV}$	jets
DL1	155678	13304729	ee	55.2/40.6	42.4	271	3	1
DL2	158582	27400066	еμ	22.7/47.8	76.9	196	3	1

Alejandro Alonso, ISMD2010, 21 September 2010

Direct Photon Production

- Test for perturbative QCD $\circ \sqrt{s} = 7 \text{TeV}, O(\mu b)$
- Constrain parton structure functions

• Photon ID is important for other physics signatures:

ο Higgs: Η -> γγ

- o Graviton decays G -> γγ
- o Decays pairs of SuperSymmetric particles

o Excited fermion decays

 $Q\overline{Q}$ Annihilation Leading Order Processes Yielding Direct Photons

• "Prompt" photons, all photons not coming from hadron decays:

Hard-scattering processes
QED radiation off quarks
non-perturbative fragmentation of q/g

• Main background:

o Decays of light neutral mesons, π_0 , η

• Data sample:

L1 Calorimeter triggerPrimary vertex with 3 tracks

• Photon ID:

• EM clusters in second Layer 3x5

- \times With inner detector track match: Converted γ
- × Without: Unconverted γ

Direct Photon Production

 Background and signal extraction based on data driven method

• Isolation variable and shower shape variables

- Purity: Signal/Measurement
- Clear signal of prompt Photons

× 618±75 Photons for E_T >20GeV, 72% ± 7% purity

Summary

• In this talk:

- EWK:
 - × Z/W Cross section measured
- Jet Physics:
 - × Single and Dijet Cross Sections measured
- Top Physics:
 - × First candidates observed
- Single Photon Production:
 - $\times\,$ Evidence of prompt photon production seen
- Analysis are going to be updated with more luminosity soon
- Full ATLAS community working hard:
 - Looking into physics
 - Understanding detector performance
- Other related analysis done:
 - Multiple jet production
 - Dijet azimuthal angle correlation
 - W/Z in jet channels

Backup

- More details on ATLAS publications:
 EWK:
 - × ATLAS-CONF-2010-044
 - × ATLAS-CONF-2010-051
 - × ATLAS-CONF-2010-076
 - o Jets
 - × ATLAS-CONF-2010-050
 - × ATLAS-CONF-2010-053
 - × ATLAS-CONF-2010-056
 - o Top:
 - × ATLAS-CONF-2010-063
 - × ATLAS-CONF-2010-087
 - × ATL-PHYS-PUB-2010-004
 - × ATL-PHYS-PUB-2010-0012
 - Direct Photon:
 - × ATLAS-CONF-2010-077

Triggers in ATLAS

MBTS(Minimum Bias Trigger Scintillators)

- 2 sets of 16 scintillator counters installed on the inner face of the end-cap calorimeter cryostats
- Located at |z| = 3560 mm,
- Cover: 2.09 < |eta| < 3.84
- Hit Coincidence between both sides
- Hit Multiplicity
- × L1 muon trigger (Pt 6GeV)

• Looks for patterns of hits within within $|\eta| < 2.4$ of high pt coming from the IP

- W analysis, 2 stations time coincidence.
- Z analysis, 2 stations time coincidence.

× L1 Calo Trigger:

- **o** Photons and electrons $|\eta| < 2.5$
- W: Signal Cluster of trigger towers is above 5 trigger counts (each count ~1GeV)
- Z: Signal Cluster of trigger towers is above 10 trigger counts (each count ~1GeV)
- × L1 Jet Trigger:
 - Measurement of Jet Production:
- L1_J5: Requires a jet with Pt>5GeV

W-> lv cross section

	W ⁺					W				W^{\pm}			
Electron channel													
	value	stat	syst	lumi	value	stat	syst	lumi	value	stat	syst	lumi	
Background-													
subtracted													
signal	25.6	5.2	0.3	0.1	17.8	4.4	0.3	0.1	43.4	6.8	0.4	0.2	
Correction C_W	0.653	-	0.052	-	0.660	-	0.053	-	0.656	-	0.053	-	
Fiducial cross													
section (nb)	2.3	0.5	0.2	0.3	1.6	0.4	0.1	0.2	3.9	0.6	0.3	0.4	
Acceptance A_W	0.466	-	0.014	-	0.457	-	0.014	-	0.462	-	0.014	-	
Total cross													
section (nb) 5.0 1.0 0.4 0.5 3.5 0.9 0.3 0.4						0.4	8.5	1.3	0.7	0.9			
Muon channel													
				I	Muon cha	annel							
	value	stat	syst	l Iumi	Muon cha	annel stat	syst	lumi	value	stat	syst	lumi	
Background-	value	stat	syst	lumi	Muon cha value	annel stat	syst	lumi	value	stat	syst	lumi	
Background- subtracted	value	stat	syst	lumi	Muon cha value	annel stat	syst	lumi	value	stat	syst	lumi	
Background- subtracted signal	value 43.8	stat 6.9	syst 0.6	1 1umi 0.3	Vuon cha value 22.8	annel stat 5.0	syst	lumi 0.2	value 66.7	stat 8.5	syst	lumi 0.5	
Background- subtracted signal Correction C _W	value 43.8 0.822	stat 6.9	syst 0.6 0.057	1 1umi 0.3	Yuon cha value 22.8 0.804	annel stat 5.0	syst 0.3 0.057	lumi 0.2	value 66.7 0.814	stat 8.5	syst 0.7 0.056	lumi 0.5	
Background- subtracted signal Correction C _W Fiducial cross	value 43.8 0.822	stat 6.9	0.6 0.057	1 1umi 0.3 -	Yuon chi value 22.8 0.804	stat 5.0	0.3 0.057	lumi 0.2 -	value 66.7 0.814	stat 8.5 -	0.7 0.056	lumi 0.5	
Background- subtracted signal Correction <i>C_W</i> Fiducial cross section (nb)	value 43.8 0.822 3.2	stat 6.9 - 0.5	syst 0.6 0.057 0.2	Iumi 0.3 - 0.4	Yuon chi value 22.8 0.804 1.7	annel stat 5.0 - 0.4	syst 0.3 0.057 0.1	lumi 0.2 - 0.2	value 66.7 0.814 4.9	stat 8.5 - 0.6	syst 0.7 0.056 0.4	lumi 0.5 - 0.5	
Background- subtracted signalCorrection C_W Fiducial cross section (nb)Acceptance A_W	value 43.8 0.822 3.2 0.484	stat 6.9 - 0.5	syst 0.6 0.057 0.2 0.014	Iumi 0.3 - 0.4 -	Yalue 22.8 0.804 1.7 0.475	annel stat 5.0 - 0.4 -	syst 0.3 0.057 0.1 0.014	lumi 0.2 - 0.2	value 66.7 0.814 4.9 0.480	stat 8.5 - 0.6	syst 0.7 0.056 0.4 0.014	lumi 0.5 - 0.5	
Background- subtracted signal Correction <i>C_W</i> Fiducial cross section (nb) Acceptance <i>A_W</i> Total cross	value 43.8 0.822 3.2 0.484	stat 6.9 - 0.5	syst 0.6 0.057 0.2 0.014	Iumi 0.3 - 0.4 -	Yuon chi value 22.8 0.804 1.7 0.475	annel stat 5.0 - 0.4 -	syst 0.3 0.057 0.1 0.014	lumi 0.2 - 0.2 -	value 66.7 0.814 4.9 0.480	stat 8.5 - 0.6	syst 0.7 0.056 0.4 0.014	lumi 0.5 - 0.5	

Table 8: Results for the fiducial cross sections σ_{fid} and total cross section σ_{tot} for W^+ , W^- , and W^{\pm} in the electron and muon channels. Shown are the observed numbers of signal events after background sub-traction for each channel, the average correction factors C_W , the fiducial cross sections, the geometrical acceptance correction factors, and the total cross sections with their statistical, systematic, and luminosity uncertainties quoted in that order.

Uncorrected Jet Shape

- Measures the energy flow around the jet core
- Fraction of the jet momentum contained within a ring of thickness $\Delta r=0.1$ at a radius r around the jet center divided by Δr

- Exotic process, where QCD is dominant BCK
- JES uncertainty dominated

Dijet production with jet veto

- Dijet search with a veto on additional radiation in the rapidity interval between the 2 jets
- Classically:
 - Search for evidence of color singlet exchange

Also:

- BFKL-like dynamics: Boundary jets as as those with the largest absolute rapidity Selection B
- Wide-angle soft gluon radiation: Boundary jets are the leading jets Selection A
- Higgs search, jet vetoes are used in searchs via vector boson fusion

• QCD predicts how the azimuthal angle between the 2 most energetic partons changes when additional radiation is produced

Alejandro Alonso, ISMD2010, 21 September 2010

• Updated luminosity:

