Heavy Flavour and Jet Production at HERA

Martin Brinkmann, DESY for the H1 and ZEUS Collaborations

1

XL International Symposium on Multiparticle Dynamics (ISMD 2010)

21th - 25th September 2010

•HERAI: 1992-2000 and HERAII: 2003-2007

• ~ 0.5 fb^{-1} per experiment

Kinematic Quantities:

- Center of mass Energy: $s = (P+k)^2$
- Photon virtuality: $Q^2 = -q^2 = (k k')^2$
- Inelasticity: $y = \frac{Pq}{Pk}$
- Bjorken Variable: $x = \frac{Q^2}{2Pq}$

Kinematic Regimes:

- $Q^2 \approx 0 \, GeV^2$: Photoproduction (PHP)
- $Q^2 \ge 1 \, GeV^2$: Deep inelastic scattering (DIS)

Jet Production at HERA

QCD factorisation:

$$\sigma_{\rm jet} \propto f_{\rm p/y} ~\otimes~ \hat{\sigma} ~\otimes~ (1 + \delta_{\rm had})$$

- $f_{p/y}$: parton distribution functions (PDFs) for proton (and photon)
- $\hat{\sigma}$: hard scattering matrix element
- δ_{had} : hadronisation correction

Measurement of jet production at HERA

- → Constraints on PDFs
- Testing ground of perturbative QCD
- Precision measurement of running strong coupling constant

10

0.4

0.2

-0.4

5

0 -0.2

rel. diff. to NLO

• Very precise data \rightarrow stringent test of (p)QCD from Q² ~ 0 - 20000 GeV²

 $0^2 > 125 \text{ GeV}^2$

 $|\cos \gamma_{\rm h}| < 0.65$

20

jet energy scale uncertainty

45 50 55

E^{jet}_{T.B} (GeV)

theoretical uncertainty

30

25

35

40

 $-1 < \eta^{\text{fet}} < 2.5$

 $0^2 < 1 \text{ GeV}^2$

0.2 < v < 0.85

t energy scale uncertainty

70

• Measurements provide direct sensitivity to α_s

Cross sections well described by NLO predictions

90

E^{jet}_T (GeV)

theoretical uncertainty

10

10

0.5

-0.5

-1

20

0

rel. diff. to NLO

Dijets in Photoproduction

- → Good description of data by NLO QCD in the whole measured range
- Sensitivity to photon (high η^{jet}) PDFs

Multijets at low Q^2

→ Good description of data by NLO predictions

Multijets at high Q²

→ Good description of data by NLO predictions

 Smaller theoretical uncertainties due to higher scale

ZEUS-prel-10-002

H1: Eur Phys J. C67 (2010) 1 H1: Eur Phys J. C65 (2010) 363

$\alpha_{\rm s}$ from Jet Cross Sections in DIS

- → Very good agreement of extraction of $\alpha_s(\mu_r)$ at low and high Q²
- Running of α_s tested over wide range of scale

Methods for Heavy Flavour Tagging

Meson identification:

• Full reconstruction from decay tracks:

$$D^{+/-} \to K^{-/+} \pi^{+/-} \pi^{+/-}$$

Lifetime tag:

- Reconstruct secondary vertex (with jet)
- Project decay length on jet axis
- Use decay length significance: S=d/δd
- Impact parameter significance of tracks

Beauty in PHP using Secondary Vertex

- → Cross sections in P_t^{jet} and η_{jet} in good agreement with LO MC (Pythia) and NLO QCD calculation (FMNR)
- Theoretical uncertainties larger than experimental ones

ZEUS

Beauty Jets in DIS

$$\mathscr{L}=189 \text{ pb}^{-1}$$
 $Q^2 > 6 \text{ GeV}^2, 0.07 < y < 0.6$
 $E_t^{\text{jet}} > 6 \text{ GeV}, -1 < \eta_{\text{jet}} < 1.5$

- Use sensitivity to lifetime
- Compare data with NLO calculation HVQDIS

→ NLO QCD calculation describes data well for both scales

H1: DESY-10-083

Heavy Flavour and Jet Production at HERA

sections

- F₂^{bb} at HERA • One way to summarize beauty measurements F2^{bb}+ 0.03 i 0.225 • Definition of F₂^{bb}: x=0.00013 i=7 0.200 Δ ZEUS μ 114 pb⁻¹ Contribution of F₁^{bb} neglected ! 0.175 x = 0.0002□ H1 vtx $\frac{d^2 \sigma^{b\bar{b}}}{dx dQ^2} = \frac{2\pi \alpha_{em}^2}{Q^4 x} \Big[(1 + (1 - y)^2) F_2^{b\bar{b}}(x, Q^2) - y^2 F_L^{b\bar{b}}(x, Q^2) \Big]$ 0.150 x=0.0005 i=: 0.125 x=0.0013 i=4 0.100 • Estimation from measured double differential cross
- Measurements consistent with each other and with NLO QCD predictions
- Gain in precision with HERAII data

ZEUS (prel.) vtx 354 pb ZEUS (prel.) e 363 pb⁻¹ ZEUS µ+vtx 126 pb⁻¹ ZEUS-S+HVQDIS GJR08 NLO ABKM NNLO MSTW08 NLO MSTW08 NNLC CTEQ6.6 NLO x=0.002 i=3 0.075 x=0.005 i=2 0.050 0.025 ⊢ x=0.013 i=1 x=0.032 i=0 0.000 10² 10³ 10 $Q^2 (GeV^2)$

Charm (D^{\pm}) in DIS

• Reconstruction: $D^+ \rightarrow K^- \pi^+ \pi^+$ using lifetime information (secondary vertex)

 Good description of data by NLO calculation (HVQDIS) over four orders of magnitude in Q²

D* Meson Cross Sections

NLO calculations describe measured cross sections reasonably well

Charm Jet Cross Sections DIS

- Flavour separation: combine secondary vertex and impact parameter information
- Compare data with NLO calculation HVQDIS

Q² > 6 GeV², 0.07 < y < 0.6

$$E_t^{jet} > 6$$
 GeV, -1 < $\eta_{jet} < 1.5$
H1: DESY-10-083
 $\mathcal{L} = 189 \text{ pb}^{-1}$

• Slight sensitivity to scale (large η)

- Combined F₂^{cc} compared to single measurements from H1 and ZEUS
- For combination take correlated systematic uncertainties into account
- Precision 5 10% for 6.5 < Q^2 < 60 GeV² o

• Combined F₂^{cc} compared to NLO and NNLO calculations

• Combined F₂^{cc} compared to HERAPDF 1.0

Precision in data good enough to discriminate between different theory predictions

- Jet physics at HERA provides precision measurements to understand QCD
- Precise and consistent extraction of strong coupling constant and its running over wide range of scale in one experiment
- Measured charm and beauty cross sections in general in good agreement with NLO QCD
- Different beauty measurements provide consistent results of $F_2^{\ bb}$
- Predictions from NLO QCD describe measured $F_2^{\ bb}$
- Combining H1 and ZEUS F_2^{cc} measurements provide a precision of 5 10 % on a wide kinematic range