XL International Symposium on Multiparticle Dynamics ISMD 2010 Antwerp, September 2010

Forward Physics and Cosmic Rays: Introduction

Convenors: M. Grothe, F. Hautmann and S. Ostapchenko

I. Introduction to 11 talks in Forward Physics and Cosmic Rays session:

- LHC experimental results [5]
- Auger [1]
- HERA [1]
- Theory [4]

With the advent of the LHC, forward physics becomes largely a new field both from theory and experiment standpoints.

\downarrow

II. Introduction to key themes from forward-region phenomenology

Particle production in the forward region at hadron colliders:

small polar angles, i.e. large rapidities

- \diamond Historically:
 - fairly specialized subject: e.g., measurements of $\sigma(\text{total})$ and $\sigma(\text{elastic})$

• dominated by soft, small- p_T processes

- \diamond At the LHC:
 - forward processes involve both soft and hard production
 - phase space opening up for large $\sqrt{s} \Rightarrow$ multiple-scale processes
 - unprecedented coverage of large rapidities (calorimeters + proton taggers)
 - forward high-p $_T$ production
 - central production of high p_T + forward protons

 Measurements of forward particle production (soft and hard) at the LHC serve as input to
 Monte Carlo models of high-energy showers in cosmic ray physics

• Fixed target collision in air with 10^{17} eV corresponds to pp interaction at LHC

LHC experimental results

 $\Diamond A$) Forward physics via main detectors + forward calorimeters:

- Low-x physics via LHC-b [J. Anderson]
- Forward particle production + energy flow: CMS [S. Cerci]
- Forward particle production + energy flow: LHC-f [L. Bonechi]

 $\Diamond B$) 'Vetoes on forward detectors':

- LHC Diffraction [S. Navin]
- $\diamondsuit C$ Physics with near beam proton taggers:

• TOTEM

Future physics:

- \bullet High-luminosity diffraction and γ physics
- Central exclusive production and discovery physics

NOTE:

Nearly all above topics imply <u>new experimental areas</u>: prime start-up physics subjects

Theoretical issues: LHC is to a large extent a QCD machine; LHC forward physics is dominated by QCD at small x.

• Factorization at small x

- Evolution / parton showering beyond collinear ordering
 - High-density effects and parton saturation

Phenomenology: How well do current Monte Carlo generators simulate LHC final states in the forward region?

Not only LHC physics...: The Cosmic Ray / Collider connection

[talk by G. Rodriguez]

R. Engel, 2010

Inputs from HERA: Diffraction in DIS and photoproduction

[talk by R. Polifka]

- new diffractive fits with HERAII data
- diffractive jet photo- and lepto-production
- diffractive $F_L^{(D)}$

+ further new results coming up from HERA analyses

OUTLINE

• Forward region \Rightarrow multiple-scale, small-x physics

 \Rightarrow Evaluation of QCD theoretical predictions in multi-scale regime:

- Perturbative QCD resummations?
- Corrections beyond single parton scattering?
- Theory tools to treat hard and soft interactions?

$\mathbf{II}.$ High-p_T production in the forward region

• asymmetric parton kinematics $x_A \rightarrow 1, x_B \rightarrow 0$

 Are fixed-order QCD calculations reliable in the forward region?
 Are perturbative QCD resummations to be performed? Forward jet production as a multi-scale problem

 summation of high-energy logarithmic corrections long recognized to be necessary for reliable QCD predictions
 ⇒ BFKL calculations

Mueller & Navelet, 1987; Del Duca et al., 1993; Stirling, 1994; Colferai et al., arXiv:1002.1365

• Large logarithmic corrections are present both in the hard scale and in the rapidity interval

 \longrightarrow Both kinds of log contributions can be summed consistently to all orders of perturbation theory via QCD factorization at fixed k_T

Forward jets:

• High-energy factorization at fixed transverse momentum

$$\frac{d\sigma}{dQ_t^2 d\varphi} = \sum_a \int \phi_{a/A} \otimes \frac{d\widehat{\sigma}}{dQ_t^2 d\varphi} \otimes \phi_{g^*/B}$$

▷ needed to resum consistently both logs of rapidity and logs of hard scale

Deak, Jung, Kutak & H, JHEP 09 (2009) 121

Figure 1: Factorized structure of the cross section.

 $\Diamond \phi_a$ near-collinear, large-x; ϕ_{q^*} k_{\perp}-dependent, small-x $\Diamond \hat{\sigma}$ off-shell continuation of hard-scattering matrix elements

FULLY EXCLUSIVE MATRIX ELEMENTS: BEHAVIOR AT LARGE K_\perp

 $Q_t = \text{final-state transverse energy (in terms of two leading jets <math>p_t$'s) $k_t = \text{transverse momentum carried away by extra jets}$

- dynamical cut-off at $k_t \sim Q_t$, set by higher-order radiative effects • non-negligible terms from finite k_t tail
- $C_F C_A$ contribution to qg dominates at high energies $s/Q_t^2 \gg 1$

Multiple parton interactions

Multi-jet production by (left) multiple parton chains; (right) single parton chain.

• modeled by shower Monte Carlo generators

Sjöstrand & Skands, 2006; Gieseke et al., 2008

On multiple parton interactions become non-negligible in hard processes at forward rapidities?

FORWARD-CENTRAL JET CORRELATIONS

polar angles small but far enough from beam axis
measure correlations in azimuth, rapidity, p_T

 $p_{\perp}\gtrsim 20~{
m GeV}$, $\Delta\eta\gtrsim 4\div 6$

central + forward detectors

azimuthal plane

1 central + 1 forward jet: particle and energy flow in the inter-jet and outside regions

Cross section as a function of the azimuthal difference $\Delta \phi$ between central and forward jet for different rapidity separations [Deak et al., in progress]

MC models: • CASCADE: non-collinear radiative corrections to single parton chain
• PYTHIA: multiple parton interactions, no corrections to collinear approximation

Transverse energy flow in the inter-jet region

• higher mini-jet activity in the inter-jet region from corrections to collinear ordering

Transverse energy flow in the outside region

 at large (opposite) rapidities, full branching well approximated by collinear ordering

• higher energy flow only from multiple interactions

♦ Energy flow due to minijets $(E_T > 5 \text{ GeV}) \Rightarrow$ reduced IR sensitivity \Rightarrow 'tune' (semi-)hard interaction component

 \Diamond Particle spectra will serve similar purpose

Figure 5: ΔR distribution of the central ($|\eta_c| < 2$, left) and forward jets ($3 < |\eta_f| < 5$, right) for $E_T > 10$ GeV (upper row) and $E_T > 30$ GeV (lower row). The prediction from the k_{\perp} shower (CASCADE) is shown with the solid blue line; the prediction from the collinear shower (PYTHIA) including multiple interactions and without multiple interactions is shown with the red and purple lines. $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$, where $\Delta \phi = \phi_{jet} - \phi_{part}$, $\Delta \eta = \eta_{jet} - \eta_{part}$

FURTHER QUESTIONS

What are the implications of higher mini-jet activity in the between region for vector boson fusion search channels ?

Could one include multi-parton interactions in a complete parton factorization picture?

♠ Could one achieve a unified understanding of forward hard processes including DIS? \longrightarrow prospects for future LHeC, EIC

• Note:

• neither PYTHIA Monte Carlo nor NLO calculations are able to describe forward jet HERA data

[A. Knutsson, LUNFD6-NFFL-7225-2007 (2007); L. Jönsson, AIP Conf. Proc. 828 (2006) 175]

A concept underlying several talks:

III. UNINTEGRATED (OR TRANSVERSE MOMENTUM DEPENDENT) PARTON DISTRIBUTIONS

- Gustafson [shower Monte Carlo]
- Enberg [uses of u-pdfs in diffraction]
- Deak [in High- p_T session]
- Cherednikov [theory developments]

correlation of quark fields ('dressed' with gauge links) at distances y, $y_{\perp} \neq 0$

 $V_y(n) = \mathcal{P} \exp\left(ig_s \int_0^\infty d\tau \ n \cdot A(y + \tau \ n)\right) \quad \nwarrow \text{ correlation of parton fields at lightcone}$ distances

 \diamondsuit Renormalization group invariance \Rightarrow

$$\frac{d}{d\ln\mu} \ \sigma = 0 \quad \Rightarrow \quad \frac{d}{d\ln\mu} \ \ln f = \gamma = -\frac{d}{d\ln\mu} \ \ln C$$

 \hookrightarrow DGLAP evolution equations [Altarelli-Parisi

Dokshitzer

Gribov-Lipatov]

$$f = f_0 \times \exp \int \frac{d\mu}{\mu} \gamma(\alpha_s(\mu))$$

 \nearrow resummation of $(\alpha_s \ln Q / \Lambda_{
m QCD})^n$ to all orders in PT

Note: expansions
$$\gamma \simeq \gamma^{(LO)} \left(1 + b_1 \alpha_s + b_2 \alpha_s^2 + ...\right)$$

$$C \simeq C^{(LO)} \left(1 + c_1 \alpha_s + c_2 \alpha_s^2 + \dots \right)$$

give LO, NLO, NNLO, ... logarithmic corrections

• more complex, potentially large corrections to all orders in α_s , $\sim \ln^k (q_i^2/q_j^2)$

e.g. $\gamma \simeq \gamma^{(LO)} \left(1 + c_1 \alpha_s + ... + c_{n+m} \alpha_s^m (\alpha_s \ L)^n + ... \right) \ , \ L = "large log"$

\hookrightarrow yet summable by QCD techniques that

generalize renormalization-group factorization
 extend parton correlation functions off the lightcone
 winitegrated (or TMD) pdf's

$\mathbf{IV}.$ FROM QCD TO MONTE CARLO EVENT GENERATORS

• Factorizability of QCD x-sections \longrightarrow probabilistic branching picture $\Diamond A$) QCD evolution by "parton showering" methods:

 $\hookrightarrow \mathsf{MC}$ based on $\mathsf{k}_\perp\text{-dependent}$ unintegrated pdfs and MEs

COHERENCE IN HIGH-ENERGY LIMIT

Soft vector-emission current from external legs \rightarrow

• leading IR singularities

[J.C. Taylor, 1980; Gribov-Low (QED)]

• fully appropriate in single-scale hard processes

Dokshitzer, Khoze, Mueller and Troian, RMP (1988); Webber, A. Rev. Nucl. Part. (1986)

 $\begin{array}{c} & \underset{(k,p)}{\overset{(n+1)}{\longrightarrow}} & \underset{(k,p)}{\overset{(n+1)}{\longleftarrow} & \underset{(k,p)}{\overset{(n+1)}{\longleftarrow} & \underset{(k,p)}{\overset{(n+1)}{\longleftarrow} & \underset{(k,p)}{\overset{(n+1)}{\longleftrightarrow} & \underset{(k,p)}{\overset{(n+1)}{\longleftrightarrow} & \underset{(k,p)}{\overset{(n+1)}{\longleftrightarrow} & \underset{(k,p)}{\overset{(n+1)}{\longleftrightarrow} & \underset{(k,p)}{\overset{(n+1)}{\ldots} & \underset{(k,p)}{\overset{(n+1)}{\ldots} & \underset{(k,p)}{\overset{(n+1)}{\overset{(n+1)}{\ldots} & \underset{(k,p)}{\overset{(n+1)}{\overset{(n+1)}{\ldots} & \underset{(k,p)}{\overset{(n$

• J depends on total transverse momentum transmitted \Rightarrow matrix elements and pdf at fixed k_⊥ ("unintegrated")

• virtual corrections not fully represented by Δ form factor \Rightarrow modified branching probability $P(z, k_{\perp})$ as well

 \triangleright K_{\perp}-DEPENDENT PARTON BRANCHING

Onintegrated (TMD) pdf's are key ingredient for different types of QCD resummations

 \diamondsuit also relevant to fully take account of coherence effects in parton showers at high energy

 \diamondsuit possibly, more natural framework to push theory towards soft p_T physics and to treat diffraction

[talk by Enberg]

In summary...

Exciting new results from the LHC

♣ Impact on cosmic rays physics → Auger results

Continuing stream of inputs from HERA

Many new, challenging physics issues

... should make for an enjoyable session and interesting times ahead!