

NA49 and NA61/SHINE experiments: results and plans

Institut Rudjer Boskovic, Zagreb, Croatia

Tatjana Susa

For NA49 and NA61/SHINE collaborations

Phase diagram of strongly interacting matter

water

strongly interacting matter

1st order phase transition

NA49 experiment

PID by dE/dx

- Large acceptance hadron detector
- Tracking by large volume TPC (VTPC1 & VTPC2 inside magnets)
- PID by dE/dx, TOF, decay topology, invariant mass
- Centrality determination by Forward Calorimeter (energy of projectile spectators)
- Data taking 1994 -2002
- Data sets: p+p, C+C, Si+Si, Pb+Pb

Evidence for the onset of deconfinement

Onset of Deconfinement: early stage hits transition line, predicted & observed signals: kink, horn, step

SMES model, M.Gazdzicki and M.Gorenstein, Acta Phys. Pol.30,2705(1999) M.Gazdzicki et al.,arXiv:1006.1765

the step

the kink

the horn

pion yield per participant ratio of strange particle to pion yield shape of transverse mass spectra 25 (MeV) щ $\langle \pi \rangle \langle N_w \rangle$ $<\pi>=1.5 \cdot (<\pi^+>+<\pi^->)$ < K > + < A > $E_s =$ 300 K^+ 0.3 Hvdro+P $< \pi$ central PbPb/AuAu 20 15 0.2 200 10^{-10} 0.1 5 NA49 AGS AGS 100 FIT $p+\overline{p}$ RHIC n 15 5 10 10 0 10^{2} 10 $\sqrt{s_{NN}}$ (GeV) $F (GeV^{1/2}) \approx s_{NN}^{1/4}$ $\sqrt{s_{NN}}$ (GeV)

NA49,C.Alt et al.,PRC77,024903(2008)

Comparison with STAR results

ISMD 2010, 20-25/09/10, Antwerp

Search for the critical point

Predicted signals

- enhanced fluctuations of multiplicity, p_T, ...
- expected size of fluctuation signals limited by finite lifetime and size of collision system (correlation lengths ~ 3 – 6 fm))

Conditions

- system has to reach deconfinement
- freeze-out occurs close to the critical point

M.Stephanov, K.Rajagopal, E.Shuryak, PRD60, 114028(1999)

Search for the critical point

Not necessary to hit precisely the critical point because large region can be affected

ISMD 2010, 20-25/09/10, Antwerp

Fluctuation measures

W: scaled variance of the multiplicity distribution

$$\omega = \frac{\operatorname{Var}(\mathbf{n})}{\langle n \rangle} = \frac{\langle n^2 \rangle - \langle n \rangle^2}{\langle n \rangle}$$

- superposition model: $\omega(A+A)=\omega(N+N)+<n>\omega_{part}$
- ω affected by participant fluctuations
- Poissonian multiplicity distribution: $\omega = 1$

Φ_{x} : fluctuations of observable x (<p_{P_{T}}>, <\phi>, Q,...)

M.Gazdzicki and S.Mrowczyski, Z.Phys.C54,127(1992)

$$\begin{split} \Phi_{\mathbf{X}} &= \sqrt{\frac{\langle \mathbf{Z}^2 \rangle}{\langle \mathbf{n} \rangle} - \sqrt{z^2}} \\ \mathbf{z} &= \mathbf{x} - \bar{\mathbf{x}}, \quad \mathbf{Z} = \sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}}) \end{split}$$

- $<...> \rightarrow$ averaging over events
- \rightarrow inclusive average
- superposition model:

$$\Phi_{x}(A+A) = \Phi_{x}(N+N)$$

- Φx independent of participant fluctuations
- independent particle emission: $\Phi_x = 0$

σ_{dvn} : measure of particle ratio fluctuations (K/ π , p/ π , K/p)

$$\sigma_{dyn} = \operatorname{sign}(\sigma_{data}^2 - \sigma_{mix}^2) \sqrt{|\sigma_{data}^2 - \sigma_{mix}^2|}, \quad \sigma_{dyn}^2 = |\nu_{dyn}|$$

E-by-E fit of particle multiplicities required mixed events used as reference

Multiplicity and <p_> fluctuations

ISMD 2010, 20-25/09/10, Antwerp

$\Phi_{pT}^{(3)}$: 3rd moment of <p_T> fluctuations

K. Grebieszkow & M. Bogusz, NA49 preliminary Φ_{pT}⁽³⁾ has strongly intensive property like Φ_{pT} (S.Mrowczynski,Phys.Lett.B465,8(1999))

ISMD 2010, 20-25/09/10, Antwerp

Φ_{Φ} : fluctuations of average azimuthal angle

- plasma instabilities (S.Mrowczynski, Phys.Lett. B314,118(1993))
- flow fluctuations (S.Mrowczynski,E.Suryak,Act.Phys.Pol.B34,4241(2003)
- onset of deconfinement, critical point

K. Grebieszkow, NA49 preliminary

- no significant energy (μ_B) dependence in central collisions
- hint of maximum in nuclear size (T) dependence ?

Event-by-event particle ratio fluctuations

E-by-E fit of particle ratios to dE/dx spectra in real and mixed events

$$\sigma_{dyn} = \operatorname{sign}(\sigma_{data}^{2} - \sigma_{mix}^{2})\sqrt{\sigma_{data}^{2} - \sigma_{mix}^{2}}; \quad \sigma_{dyn}^{2} = |V_{dyn}|$$
NA49 data: PRC79,044910(2009)
$$\int_{0}^{0} \int_{0}^{0} \int_{0}^{0}$$

UrQMD calculations at RHIC energies courtesy of Hui Wang

SPS Heavy Ion and Neutrino Experiment

Successor and extension of NA49

NA61/SHINE physics program:

- Critical Point and Onset of Deconfinement,
- Particle yield measurements for
 - Neutrino physics
 - Cosmic-ray physics

Proposal: Lol: Eol: CERN-SPSC-2006-034, SPSC-P-330 (November 3, 2006) CERN-SPSC-2006-001, SPSC-I-235 (January 6, 2006) CERN-SPSC-2003-031, SPSC-EOI-001 (November 21, 2003)

Physics goals

ISMD 2010, 20-25/09/10, Antwerp

Main detector upgrades

SHINE First physics results (2007 pilot run)

NA61

Physics runs: 2009 & 2010

Registered in 2009

p+C at 31 GeV/c p+(T2K RT) at 31 GeV/c pion+C at 158 GeV/c pion+C at 350 GeV/c p+p at 20 GeV/c p+p at 31 GeV/c p+p at 40 GeV/c p+p at 80 GeV/c p+p at 158 GeV/c

Registered in 2010:

p+(T2K RT) at 31 GeV/c p+p at 13 GeV/c p+p at 158 GeV/c in progress

- MD Machine development
- MP Machine problems
- TC Target Change
- BC Beam Change

Data analysis in progress

ISMD 2010, 20-25/09/10, Antwerp

Progress and plans in data taking for CP & OD

Conclusion

Indications for the onset of deconfinement observed by NA49 at the low SPS energies

Confirmation of NA49 results on the onset of deconfinement by STAR at RHIC in progress

Search for critical point of strongly interacting matter by NA49 presently inconclusive

NA61/SHINE has started 2D (T- μ_B) scan of QCD phase diagram

Detector performing well, data taking for OD & CP in progress

T. Anticic²², B. Baatar⁸, D. Barna⁴, J. Bartke⁶, H. Beck⁹, L. Betev¹⁰, H. Białkowska¹⁹,
C. Blume⁹, M. Bogusz²¹, B. Boimska¹⁹, J. Book⁹, M. Botje¹, P. Bunčić¹⁰, T. Cetner²¹,
P. Christakoglou¹, P. Chung¹⁸, O. Chvála¹⁴, J.G. Cramer¹⁵, V. Eckardt¹³, Z. Fodor⁴,
P. Foka⁷, V. Friese⁷, M. Gaździcki^{9,11}, K. Grebieszkow²¹, C. Höhne⁷, K. Kadija²², A. Karev¹⁰,
V.I. Kolesnikov⁸, M. Kowalski⁶, D. Kresan⁷, A. László⁴, R. Lacey¹⁸, M. van Leeuwen¹,
M. Maćkowiak²¹, M. Makariev¹⁷, A.I. Malakhov⁸, M. Mateev¹⁶, G.L. Melkumov⁸, M. Mitrovski⁹,
St. Mrówczyński¹¹, V. Nicolic²², G. Pálla⁴, A.D. Panagiotou², W. Peryt²¹, J. Pluta²¹,
D. Prindle¹⁵, F. Pühlhofer¹², R. Renfordt⁹, C. Roland⁵, G. Roland⁵, M. Rybczyński¹¹,
A. Rybicki⁶, A. Sandoval⁷, N. Schmitz¹³, T. Schuster⁹, P. Seyboth¹³, F. Siklér⁴, E. Skrzypczak²⁰,
M. Słodkowski²¹, G. Stefanek¹¹, R. Stock⁹, H. Ströbele⁹, T. Susa²², M. Szuba²¹, M. Utvić⁹,
D. Varga³, M. Vassiliou², G.I. Veres⁴, G. Vesztergombi⁴, D. Vranić⁷, Z. Włodarczyk¹¹,

¹NIKHEF, Amsterdam, Netherlands. ²Department of Physics, University of Athens, Athens, Greece. ³Eötvös Loránt University, Budapest, Hungary ⁴KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. ⁵MIT, Cambridge, USA. ⁶H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland. ⁷Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany. ⁸Joint Institute for Nuclear Research, Dubna, Russia. ⁹Fachbereich Physik der Universität, Frankfurt, Germany. ¹⁰CERN, Geneva, Switzerland. ¹¹Institute of Physics, Jan Kochanowski University, Kielce, Poland. ¹²Fachbereich Physik der Universität, Marburg, Germany. ¹³Max-Planck-Institut für Physik, Munich, Germany. ¹⁴Inst. of Particle and Nuclear Physics, Charles Univ., Prague, Czech Republic. ¹⁵Nuclear Physics Laboratory, University of Washington, Seattle, WA, USA. ¹⁶Atomic Physics Department, Sofia Univ. St. Kliment Ohridski, Sofia, Bulgaria. ¹⁷Institute for Nuclear Research and Nuclear Energy, BAS, Sofia, Bulgaria. ¹⁸Department of Chemistry, Stony Brook Univ. (SUNYSB), Stony Brook, USA. ¹⁹Institute for Nuclear Studies, Warsaw, Poland. ²⁰Institute for Experimental Physics, University of Warsaw, Warsaw, Poland. ²¹Faculty of Physics, Warsaw University of Technology, Warsaw, Poland. ²²Rudjer Boskovic Institute, Zagreb, Croatia.

NA61: 130 physicists from 24 institutes and 13 countries:

additional / backup slides

<u>QCD critical point searches – future experimental landscape</u>

partly complementary programs planned at CERN SPS 2011 BNL RHIC 2010 DUBNA NICA 2016 GSI SIS-CBM 2017 ?

strong points of NA61:

- tight constraint on spectators
- high event rate at all SPS energies
- flexibility to change A and energy

Strong points of BNL/STAR:

- full uniform azimuthal acceptance
- excellent TOF identification
- low track density

Experimental landscape of complementary programs of nucleus-nucleus collisions around the SPS energies

Facility:	SPS	RHIC	NICA	SIS-100 (SIS-300)		
Exp.:	NA61	STAR PHENIX	MPD	СВМ		
Start:	2011	2010	2016	2017 (2019)		
Pb Energy:	4.9-17.3	7.7- 39	≤11	(2013) ≤5 (~8.5)		
(GeV/(N+N))				(<0.5)		
Event rate: (at 8 GeV)	100 Hz	3-30 Hz	≤10 kHz	≤10 MHz		
Physics:	CP&OD	CP&OD	OD&HDM	HDM (OD)		

- CP critical point
- OD onset of deconfinement, mixed phase, 1st order PT
- HDM hadrons in dense matter

ISMD 2010, 20-25/09/10, Antwerp

PSD – Projectile Spectator Detector (completion for 2012)

- · 60 lead/scintillator sandwiches
- 10 longitudinal sections
- 6 WLS-fiber/MAPD
- 10 MAPDs/module
- 10 Amplifiers with gain~40

Fig1FionivievotreFS20movirgdation

ISMD 2010, 20-25/09/10, Antwerp

SHINE

NA61

Secondary Boron beam: basic idea

ISMD 2010, 20-25/09/10, Antwerp

SHINE

NA61

ISMD 2010, 20-25/09/10, Antwerp

NA61/SHINE data taking plan

	Beam Primary	Beam Secondary	Target	Energy $(A \ \text{GeV})$	Year	Duration days/MDs	Physics	Status
	р	р	р	400 158	2010	77 d	High \mathbf{p}_T	recommended
FR test-1	Pb	пВ	none	20,80 20,80	2010	$10 \mathrm{MDs}$	FS test-1	to be discussed
	р	р	Pb	400 158	2011	77 d	High p_T	recomm ended
secondary (FR test-2)	Pb	¹¹ B	С	10,20,30,40,80,158 10,20,30,40,80,158	2011	20 d	FS test-2	to be discussed
	р	р	Pb	400 10,20,30,40,80,158	2012	$6 \times 8 d$	CP,OD	recommended
primary	Ar		Ca	10,20,30,40,80,158	2012	6x8 d	CP,OD	recommended
(secondary)	РЬ	¹¹ B	С	10,20,30,40,80,158 10,20,30,40,80,158	2013	6x10 d	CP,OD	to be discussed
primary	Xe		La	10,20,30,40,80,158	2014	6x8 d	CP,OD	to be discussed

ISMD 2010, 20-25/09/10, Antwerp