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The one-body partonic distributions in the hadrons are well investigated using electromag-
netic or weak interactions. The events with multiple electromagnetic or weak interactions
on the same hadron are the very rare. Thus the double parton distributions can be in-
vestigated in the events with double QCD hard scattering of partons of the same hadron:
it depends not only on the rapidities (or fractional momenta) of the partons but also on
a transverse variable. The nucleon-deuteron collision can be a good candidate for this
kind of investigations because of the known structure of the deuteron wave function which
provides a probe, absent in hadron-hadron collision.

1 Motivations

The one-body partonic distributions in the hadrons are well investigated using electromagnetic
or weak interactions.
In order to study events with hard double scattering of partons of the same hadron, one can
observe events with hard QCD double scattering:[1][2][3][4] such events become more and more
abundant as the energy of the colliding hadrons grows. In fact at very high energies even the
parton at small fractional momentum x may suffer collisions with momentum transfer large
enough to allow a perturbative treatment.
A global parameter describing the effect of multiple interactions is the effective cross section:
σeff = σS

2/(2 · σD); where σS is the integrated inclusive cross section for one hard scattering
and σD is the integrated inclusive cross section for two hard scatterings. At first sight σeff

defines the size of the hadron; this is not the whole story, also the correlations among the
partons and the multiplicity distribution have their role in buiding up σeff . One can note that
it is also possible to consider less global characteristics performing only a limited integration:
xo −∆x < x < xo +∆x x′

o −∆x < x′ < x′
o +∆x → σeff

∣∣
xox′

o
.

We could go on further and, for K−hard scatterings, define the dimensionless parameters τK
through [5][6]

σK =
(σS)

K

K!(σeff)K−1τK
τ2 = 1 .

The relevance of the multiplicity distribution on the effective cross section is shown working
out a short example where two distributions are compared:
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1-Uncorrelated Poissonian distribution.

Γ(x1, b1, . . . , xn, bn) =
1

n!
D(x1, b1) . . . D(xn, bn) exp

[
−
∫

D(x, b)dxd2b
]

If furthermore: D(x, b) = g(x)f(b) with∫
f(b)d2b = 1 and F (β) =

∫
d2bf(b) f(b− β) then

σeff =
1∫

d2βF 2(β)

2-Negative-binomial distribution[7].

Γ(x1, b1, . . . , xn, bn) =
(ν)n
n!

D(x1, b1) . . . D(xn, bn)
[
1−

∫
D(x, b)dxd2b

]ν
With the same procedure

σeff =
1∫

d2βF 2(β)

[ν + 1

ν

]2
In an analogous, but more complicated way, a not factored distribution yields a different result
for σeff , it depends now explicitly on the two-body correlations.

2 New features in Nucleon-Deuteron scattering

2.1 Description of the process

The typical feature of the Nucleon-Deuteron scattering is that there are two different processes
that act, in principle, coherently:
I: Only one nucleon suffers hard interaction:
With respect to the Nucleon-Nucleon interaction nothing essentially new happens.
II: Both nucleons of the deuteron suffer hard interaction.
The deuteron w.f. (wave function) enlightens deeper details of the nucleon structure.

The processes are described by Feynman graphs (see next pages), so the kinematics is cor-
rect and the relevant singularities are apparent.
Since the final states of the two processes are different, the former contains two fragmented nu-
cleons of the deuteron, the latter a fragmented and an unbroken nucleon there is no interference
term.

Outline of the calculation
In order to go from the general expression corresponding to the Feynman graphs to simpler
expressionhe suited for our purposes the following procedure is used:
1. Whenever possible, the small ±-components are neglected with respect to the large ±-
components.
2. The large ±-components are integrated taking into account the dominant singularities.
3. On the transverse components the Fourier transformation is performed, so we end with an
expression in terms of fractional longitudinal momenta and transverse coordinates. The hard
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Figure 1: I-Both nucleons interact once. II-One nucleon interacts twice

interaction is local in comparison with the hadron size.
In this way the two addenda of the cross section for the double scattering σ(2)(x1, x2, x

′
1, x

′
2)

acquires an explicit form:
When both nucleon interact the expression for the cross section is:

σ1,1 =
1

(2π)3

∫
Γ(x1, x2, b1, b2)Γ(x

′
1/Z, β1)Γ(x

′
2/(2− Z), β2)

× dσ̂(x1, x
′
1)

dΩ1

dσ̂(x2, x
′
2)

dΩ2

|ΨD(Z,B)|2

Z(2− Z)

× dBdZ
∏
i=1,2

dbidβidxidx
′
idΩiδ(B + b1 − b2 − β1 + β2)

When only one nucleon interacts (twice) the expression for the cross section becomes:

σ2,0 =
1

(2π)3

∫
Γ(x1, x2, b1, b2)Γ(x

′
1/Z, x

′
2/Z, β1, β2)

× dσ̂(x1, x
′
1)

dΩ1

dσ̂(x2, x
′
2)

dΩ2

|ΨD(Z,B)|2

Z(2− Z)

× dBdZ
∏
i=1,2

dbidβidxidx
′
idΩiδ(b1 − b2 − β1 + β2)

Note that now in the argument of the δ−function the coordinates of the deuteron w.f. are
absent.

In the previous expressione xj are, as usual, the fractional large momenta of the partons
(the + or the - component) Z is the fractional momentum of the nucleon in the deuteron
normalized in such a way that 0 < Z < 2, the two-dimensional vectors bj , B, β are transverse
coordinates, the Γ are the one-parton or two-parton structure function of the nucleons and Ψ
is the three-dimensional wave function of the deuteron. Finally the expressions dσ̂/dΩ are the
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differential cross sections of the elastic scattering of the partons with respect to the scattering
angles.

2.2 Covariant form for the deuteron wave function

Since the deuteron wave-function has a role in the present analysis something must be added
about it: In a fully relativistic treatment, but neglecting the spin structure, we should start
with the Bethe-Salpeter function χD(p) satisfying the equation[8][9]

χD(p) =
1

(D/2 + p)2 −m2 + iε

1

(D/2− p)2 −m2 + iε

∫
ig2

q2 − µ2
χD(p+ q)

d4q

(2π)4

Correspondingly the effective vertex is

ΦD(p) =

∫
ig2

q2 − µ2
χD(p+ q)

d4q

(2π)4

The relative motion of the two nucleon is nonrelativistic, in the frame D = 0, q2 − µ2 ≈
−(q2 + µ2) and we can integrate over qo, that is we consider static interactions, thus we define

φD(p+ q) =

∫
ΨD(p+ q)

dqo
2π

.

The binding energy B is defined by: M2
D = (2m−B)2 ≈ 4m(m−B)

At first order in kinetic and binding energies from the original equation we get the Schrödinger
equation: (p2

m
+B

)
φD(p) =

1

4m2

∫
g2

q2 + µ2
φD(p+ q)

d3q

(2π)3

and an effective vertexis defined by:

φD =
iΦD

E(4E2 −M2
D)

E =
√
p2 +m2

The normalization is fixed by the overall conservation of charge.
A scalar wave function depends on p2, this in turn is expressible in covariant form and in
light-cone variables:

p2 +m2 =
1

4MD
2

[
(D − p)2 −m2 −M2

D

]2
p2 +m2 =

1

4MD
2

[Z
2
M2

D +
2

Z
m2

t

]2
So we can use the well known non relativistic wave function and still have a covariant expression.

2.3 A model worked out completely

This is a model which is oversimplified, but it can be worked out in a transparent way:
One-parton distribution:

Γ1 =
G(x)
πR2

exp[−b2/R2]
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Two-parton distribution:

Γ2 = K
G(x1)G(x2)

(πR2)2(1− λ2)
exp[−(b21 + b22 + 2λb1b2)/R

2(1− λ2)]

Since ∫
G(x)dx = n it results :

∫
Γ2dx2db2 = KnΓ1

K controls the parton multiplicity, λ their spatial correlation.
For the single σ1 and double σ2 scattering we have:

σ1 =

∫
σ̂G(x)dxG(x′)dx′ , σ2 =

[ ∫
σ̂G(x)dxG(x′)dx′

]2 1

πR2

K2

4(1 + λ)

Hence the ratio σeff is given by

σeff =
2πR2(1 + λ)

K2

Now represent deuteron |w.f.|2 as

D(Z)
1

πS2
exp[−s2/S2] 0 < Z < 2

w.f. nonrelativistic, Z ≈ 1. One-parton distribution within deuteron:

Γ̄1 =

∫
G1(x/Z)

πR2
exp[−(b− s)2/R2]

D(z)

πS2
exp[−s2/S2]dZds

using Z ≈ 1:

Γ̄1 =
G1(x)

π(R2 + S2)
exp[−b2/(R2 + S2)]

Collision with a free nucleon, simple scattering: σ1 =
∫
σ̂G(x)dxG(x′)dx′ , the form is the same

as for the Nucleon-Nucleon case, the Deuteron structure does not appear.
Collision with a free nucleon, double scattering. There are two possibilities already discussed:
Only one interacting nucleon:

The integration over the spectator w.f. eliminates S.

σ′
2 = 2×

[ ∫
σ̂G(x)dxG(x′)dx′

]2 1

πR2

K2

4(1 + λ)

Both interacting nucleons:
Here the size of the deuteron S is relevant

σ”2 =
[ ∫

σ̂G(x)dxG(x′)dx′
]2 1

πR2

K

(2 + λ) + (S/R)2

so, for the effective cross sections we get:

σ
(N)
eff =

2πR2(1 + λ)

K2
σ
(d)
eff = 2σ

(N)
eff

[
1 +

2(1 + λ)/K

(2 + λ) + (S/R)2

]
By determinig σ

(N)
eff and σ

(d)
eff we know separately K and λ, assuming that S is known since the

deuteron w.f. is known.
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3 Conclusions and outlook

The knowledge of the deuteron w.f. is a help in investigating the structure of the hadron, in
particular the transverse two-body correlations.
Refinements of the treatment here presented could be:
Taking into account the spin properties both of the free nucleons and of the deuteron.
Taking into account the possible soft rescattering of the particles that underwent hard inter-
action with the remnants. One could say that either the rescattering can happen very soon
after the primary interaction, in this case the particles are very near each other and a large
momentum can be exchanged, the rescattering is simply a next-order correction in the pertur-
bative expansion or the rescattering happens when the primary interaction is already finshed
the particles are free and the interaction introduces an S−matrix which is unitary, in the sum
over the final state we simply use SS+ = 1 and sum over the original states. Since the soft
fragments of the spectator nucleon are unobserved, the on shell configuration of the spectator
includes also final state interactions.

A more detailed presentation can be found on arXiv 1009,5881
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