Measurements of two-particle correlations in pp collisions at $\sqrt{s} = 900 \text{ GeV}$ with the ALICE experiment[§]

Jorge Mercado[‡] on behalf of the ALICE Collaboration

[‡]mercado@physi.uni-heidelberg.de

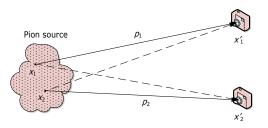
ISMD 2010 – Antwerp September 22, 2010

- Look for signatures of collective behavior in pp collisions at LHC energies
 - by using the Bose-Einstein enhancement of identical-pion pairs to deduce the size of the pion source, and
 - by studying the source size as a function of event multiplicity and particle transverse momentum.
- Measurement in pp interesting in itself, but also crucial as reference for heavy-ion collisions.

Bose-Einstein correlations

The space-time properties of the emitting source in elementary particle collisions can be investigated through measurements of Bose-Einstein correlations (BEC) between identical bosons.

• The interference is studied using the correlation function (CF)


 $C(p_1, p_2) = \frac{N(p_1, p_2)}{N(p_1)N(p_2)}.$

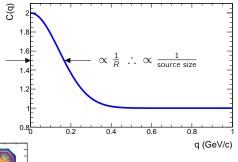
• Since BEC are manifest at small relative momenta, *C* is measured using the distribution of the variable *q*,

$$q = \sqrt{-(p_1 - p_2)^2} = \sqrt{m_{inv}^2 - 4m_{\pi}^2}$$

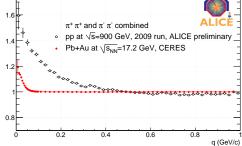
Experimentally,

$$C(q)=\frac{A(q)}{B(q)}.$$

A(q) is the measured distribution of pair momentum difference q, and B(q) is a reference distribution built by using pairs of particles from different events which by construction are expected to have no BEC.

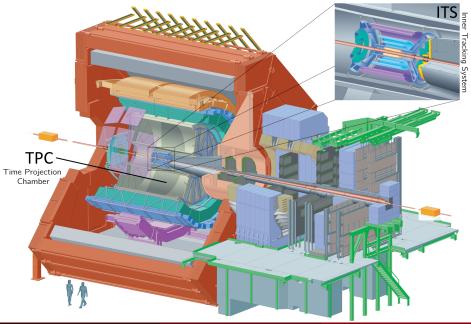

HBT radius

o 1.8


 In this technique, also known as Hanbury Brown-Twiss (HBT) interferometry, a commonly used parametrization of C(q) is

$$C(q) = 1 + \lambda e^{-(Rq)^2},$$

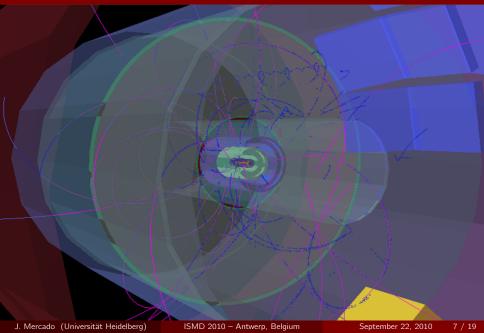
where R is the effective size of the emission region and the parameter λ measures the strength of BEC.



It has been observed that the HBT radius allows to distinguish between different collision systems, e.g. pp and Pb+Au.

J. Mercado (Universität Heidelberg)

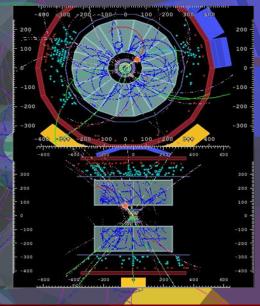
ALICE – A Large Ion Collider Experiment


ALICE – A Large Ion Collider Experiment

Dedicated to study high-energy nuclear collisions, ALICE is also fully exploiting the LHC pp physics program.

- Size: 16×26 meters
- Weight: 10 000 tonnes
- 18 sub-detectors, 2 magnets
- 1 000 members, 90 institutes, 30 countries

J. Mercado (Universität Heidelberg)


Running conditions

Running conditions

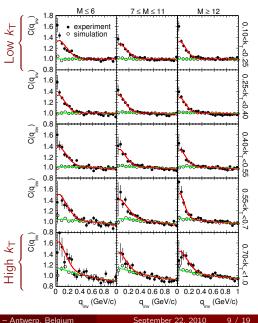
Data collected during the first stable-beam period of the LHC commissioning in December 2009.

- 250k events analyzed.
- Recorded with B = 0.5 T.
- Using tracks registered by the ITS and TPC detectors.
- First results limited by available statistics.

J. Mercado (Universität Heidelberg)

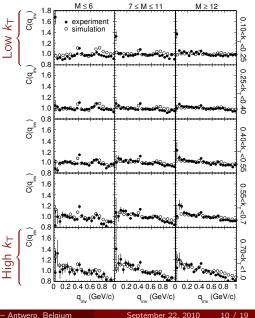
ISMD 2010 - Antwerp, Belgium

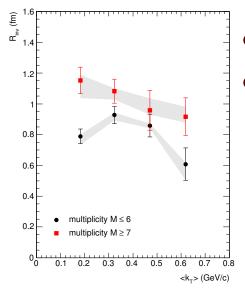
September 22, 2010 8 / 19


Identical pion correlation functions

- Analysis performed only for the one-dimensional CFs, $C(q_{inv})$, due to the limited available statistics.
- Combined $\pi^+\pi^+$ and $\pi^-\pi^-$ pairs.
- CFs studied in bins of event multiplicity, M, and of transverse momentum, $k_{\rm T} = \frac{1}{2} |p_{\rm T,1} + p_{\rm T,2}|$.
- Gaussian function used to fit the BEC peak,

 $G(q_{\rm inv}) = \lambda \cdot \exp\left(-R_{\rm inv}^2 q_{\rm inv}^2\right),$


with λ the correlation strength, and Rinv the HBT radius.

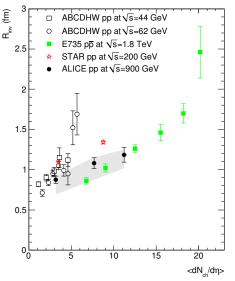

- Long-range correlations develop as $k_{\rm T}$ increases.
- Simulations made using PHOJET.

Non-identical pion correlation functions

- $\pi^+\pi^-$ correlations used to verify the description of the CF baseline.
- Mutual Coulomb interaction and meson decay peaks are reproduced reasonably well by PHOJET.
- The same model can be used to describe the correlation baseline for identical pion CFs.
- Since the structures are different in like-sign and unlike-sign pions, the ratio of the two CEs was not used.
- Baseline has to be treated properly.

Extracting the HBT radii

Simulation points are fitted with


 $D(q_{\rm inv}) = a + b q_{\rm inv} + c q_{\rm inv}^2.$

- Particular CF is fitted by
- $$\begin{split} \mathcal{C}(q_{\text{inv}}) &= \left\{ (1-\lambda) + \lambda \mathcal{K}(q_{\text{inv}}) \right. \\ &\times \left[1 + \exp\left(-R_{\text{inv}}^2 q_{\text{inv}}^2\right) \right] \left\} \mathcal{D}(q_{\text{inv}}), \end{split}$$

taking $D(q_{inv})$ from the PHOJET fit and adjusting λ and R_{inv} . The factor $K(q_{inv})$ accounts for the Coulomb effect.

- Systematic errors (shaded bands): difference between the fits using PHOJET and PYTHIA backgrounds.
- The multiplicity and k_T dependencies were analyzed separately.

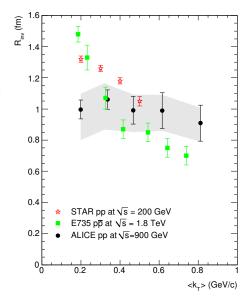
- Source radius increases with multiplicity, consistent with previous measurements.
- Well known behavior in nuclear collisions.
 - In pp collisions, indicates that the HBT radii depend on multiplicity rather than on collision geometry.
- Systematic error includes contributions from baseline assumption, fitting procedure and background construction.

Gaussian vs. exponential fit

• Extracting the HBT radii using an exponential fit function gives results in close agreement to those obtained from a Gaussian fit.

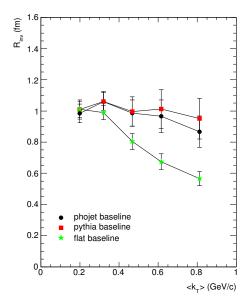
Gaussian

 $C(q_{\text{inv}}) = \left\{ (1 - \lambda) + \lambda K(q_{\text{inv}}) \left[1 + \exp\left(-R_{\text{inv}}^2 q_{\text{inv}}^2\right) \right] \right\} D(q_{\text{inv}})$


$\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta angle$	λ	R _{inv} (fm)
3.2	0.386 ± 0.022	0.874 ± 0.047 (stat.) $^{+0.047}_{-0.181}$ (syst.)
7.7	0.331 ± 0.023	1.082 ± 0.068 (stat.) $^{+0.069}_{-0.206}$ (syst.)
11.2	0.310 ± 0.026	1.184 \pm 0.092 (stat.) $^{+0.067}_{-0.168}$ (syst.)

Exponential

$\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta angle$	λ	$R_{ m inv}/\sqrt{\pi}$ (fm)
3.2	0.704 ± 0.048	0.809 ± 0.061 (stat.) $^{+0.049}_{-0.208}$ (syst.)
7.7	0.577 ± 0.054	0.967 ± 0.095 (stat.) $^{+0.071}_{-0.206}$ (syst.)
11.2	0.548 ± 0.051	1.069 ± 0.104 (stat.) $^{+0.063}_{-0.203}$ (syst.)


Transverse momentum dependence

- Dependence on k_T : important to unravel presence of bulk, collective behavior in pp collisions.
- Our HBT radius is practically independent of k_T within the range studied.
- This result crucially depends on the baseline shape assumption.
 - If the baseline is assumed to be flat, an apparent k_T dependence emerges.
 - This is due to non-BEC that give rise to wider CFs which are misinterpreted as smaller radii.

Transverse momentum dependence

- Dependence on k_T : important to unravel presence of bulk, collective behavior in pp collisions.
- Our HBT radius is practically independent of k_T within the range studied.
- This result crucially depends on the baseline shape assumption.
 - If the baseline is assumed to be flat, an apparent k_T dependence emerges.
 - This is due to non-BEC that give rise to wider CFs which are misinterpreted as smaller radii.

Summary

- ALICE has measured two-pion correlation functions in pp collisions at $\sqrt{s} = 900$ GeV.
- The extracted HBT radii increase with event multiplicity, in agreement with previous measurements.
- Less consistent is the transverse momentum dependence where R_{inv} is practically constant within the errors and range studied.
 - Three-dimensional analysis will give more information.
- Baseline correlations are of crucial importance.
- Results from Gaussian and exponential fits are in good agreement.

The results presented here have been published in Phys. Rev. D **82**, 052001 (2010)

J. Mercado (Universität Heidelberg)

Backup

Data analysis

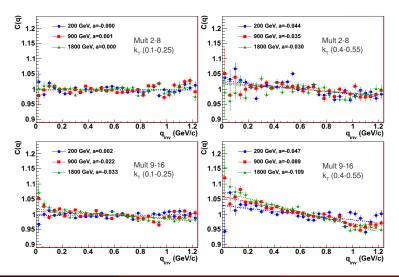
- Data sets:
 - Runs 104068–104892,
 - PYTHIA LHC10a12,
 - PHOJET LHC10a14,
- Event selection:
 - 252×10^3 minimum bias pp events
 - Trigger efficiency 95-97%
 - Primary vertex within 10 cm of TPC's center
 - Pseudorapidity range $|\eta| < 0.8$
- Track selection:
 - Transverse impact parameter r < 2.4 cm (TPC)
 - Longitudinal impact parameter z < 3.2 cm (TPC)
 - Transverse momentum range $0.15 \le p_{\rm T} \le 0.65 \text{ GeV}$

252k events (241k good) 1762k events (1328k good) 2352k events (1987k good)

Gaussian vs. exponential fit (transverse momentum)

^	
(₁ a	ussian
Gu	assian

$\langle k_{\rm T} \rangle$ (GeV/c)	λ	R _{inv} (fm)
0.20	0.35 ± 0.03	1.00 ± 0.06 (stat.) $^{+0.10}_{-0.20}$ (syst.)
0.32	0.33 ± 0.03	1.06 ± 0.06 (stat.) $^{+0.11}_{-0.19}$ (syst.)
0.47	0.30 ± 0.04	0.99 \pm 0.09 (stat.) $^{+0.10}_{-0.14}$ (syst.)
0.62	0.35 ± 0.06	0.99 \pm 0.11 (stat.) $^{+0.10}_{-0.13}$ (syst.)
0.81	0.31 ± 0.06	$0.91 \pm 0.12 \text{ (stat.) } ^{+0.10}_{-0.12} \text{ (syst.)}$


Exponential

$\langle k_{\rm T} \rangle$ (GeV/c)	λ	$R_{ m inv}/\sqrt{\pi}$ (fm)
0.20	0.63 ± 0.05	0.94 \pm 0.07 (stat.) $^{+0.09}_{-0.20}$ (syst.)
0.32	0.58 ± 0.04	0.93 \pm 0.07 (stat.) $^{+0.09}_{-0.20}$ (syst.)
0.47	0.55 ± 0.07	0.92 ± 0.10 (stat.) $^{+0.09}_{-0.14}$ (syst.)
0.62	0.70 ± 0.11	0.98 ± 0.14 (stat.) $^{+0.10}_{-0.14}$ (syst.)
0.81	0.60 ± 0.12	0.90 \pm 0.16 (stat.) $^{+0.12}_{-0.15}$ (syst.)

J. Mercado (Universität Heidelberg)

Baseline correlations at various energies

• Baseline correlations grow with multiplicity and k_{T} , probably small at 200 GeV, but strong at 1.8 TeV.

J. Mercado (Universität Heidelberg)