The tau-mode 00 0000 000 Elongation?

Summar

Applications

Bose-Einstein Results from L3 and the Tau Model

W.J. Metzger

Radboud University Nijmegen

with T. Novák, T. Csörgő, W. Kittel

XL International Symposium on Multiparticle Dynamics Antwerp 21–25 September 2010

tro	d 1	1 Ot	OF	•
 по	CH	юн	UT.	
 uυ	uu	J UL		

The tau-mod 00 0000 000 Elongation?

Summar

Applications

BEC Introduction

$$R_2 = \frac{\rho_2(p_1, p_2)}{\rho_1(p_1)\rho_1(p_2)} = \frac{\rho_2(Q)}{\rho_0(Q)}$$

Assuming particles produced incoherently with spatial source density S(x),

$$R_2(Q) = 1 + \lambda |\widetilde{S}(Q)|^2$$

where $\widetilde{S}(Q) = \int dx \, e^{iQx} S(x)$ — Fourier transform of S(x) $\lambda = 1$ — $\lambda < 1$ if production not completely incoherent Assuming S(x) is a Gaussian with radius $r \implies$ $R_2(Q) = 1 + \lambda e^{-Q^2 r^2}$

				1.41		
In	ro	a	1.17	ht	0	n
		u	u	20	IU	

The tau-mod 00 0000 0000 Elongation?

Summar

Applications

The L3 Data

- $e^+e^- \longrightarrow$ hadrons at $\sqrt{s} \approx M_Z$
- about 36 · 10⁶ like-sign pairs of well measured charged tracks from about 0.8 · 10⁶ events
- about $0.5 \cdot 10^6$ 2-jet events Durham $y_{cut} = 0.006$
- about 0.3 · 10⁶ > 2 jets, "3-jet events"
- use mixed events for reference sample, ρ₀

The tau-mode 00 0000 000 Elongation'

Summar

Applications

Previous Results: Elongation Results in LCMS frame: Longitudinal = Thrust axis

► LCMS

(ZEUS finds similar results in ep) \sim 25% elongation along thrust axis

OPAL:

Elongation larger for narrower jets

- Conclusion: Elongation, but it is relatively small.
- So: Ignore it. Assume spherical.

Introduction	The tau-model	Elongation?	Summary	Applications
0.	00	00		000
0	0000	000		0
0	000			

Transverse Mass dependence of *r*

Smirnova&Lörstad,7thInt.Workshop on Correlations and Fluctuations (1996)

Van Dalen,8thInt.Workshop on Correlations and Fluctuations (1998)

OPAL, Eur. Phys. J C52 (2007) 787

r decreases with m_t (or k_t) for all directions

The tau-mode oo oooo ooo Elongation?

Summary

Applications

Results on *Q* from L₃ Z decay

 $R_2 = \gamma \cdot [\mathbf{1} + \lambda G] \cdot (\mathbf{1} + \epsilon Q)$

Gaussian

 $\boldsymbol{G} = \exp\left(-(\boldsymbol{r}\boldsymbol{Q})^2\right)$

- Edgeworth expansion $G = \exp(-(rQ)^2)$ $\cdot \left[1 + \frac{\kappa}{3!}H_3(rQ)\right]$ Gaussian if $\kappa = 0$ $\kappa = 0.71 \pm 0.06$
- symmetric Lévy $G = \exp(-|rQ|^{\alpha})$ $0 < \alpha \le 2$ $\alpha = 1.34 \pm 0.04$

Poor χ^2 . Edgeworth and Lévy better than Gaussian, but poor. Problem is the dip of R_2 in the region 0.6 < Q < 1.5 GeV

ion	The tau-model 00 0000 000	Elongation? 00 000	Summary	Applications 000 0
		Summary		

Summary

- BEC depend (approximately) only on Q, not its components.
- BEC depend on *m*_t.
- Gaussian and similar parametrizations do not fit.

Turn now to a model providing such dependence.

Introduct

The tau-model

Elongation?

Summary

Applications

The au-model

T.Csörgő, W.Kittel, W.J.Metzger, T.Novák, Phys.Lett.**B663**(2008)214 T.Csörgő, J.Zimányi, Nucl.Phys.**A517**(1990)588

• Assume avg. production point is related to momentum: $\overline{\chi}^{\mu}(p^{\mu}) = a \tau p^{\mu}$

where for 2-jet events, $a = 1/m_t$

 $\tau = \sqrt{\overline{t}^2 - \overline{r}_z^2}$ is the "longitudinal" proper time and $m_t = \sqrt{E^2 - p_z^2}$ is the "transverse" mass

• Let $\delta_{\Delta}(x^{\mu} - \overline{x}^{\mu})$ be dist. of prod. points about their mean, and $H(\tau)$ the dist. of τ . Then the emission function is $S(x, p) = \int_{0}^{\infty} d\tau H(\tau) \delta_{\Delta}(x - a\tau p) \rho_{1}(p)$

• In the plane-wave approx. F.B.Yano, S.E.Koonin, Phys.Lett.**B78**(1978)556. $\rho_2(p_1, p_2) = \int d^4x_1 d^4x_2 S(x_1, p_1) S(x_2, p_2) \left(1 + \cos\left(\left[p_1 - p_2\right][x_1 - x_2]\right)\right)$

• Assume $\delta_{\Delta}(x - a\tau p)$ is very narrow — a δ -function. Then

 $R_2(p_1, p_2) = \mathbf{1} + \lambda \operatorname{Re}\widetilde{H}\left(\frac{a_1 Q^2}{2}\right) \widetilde{H}\left(\frac{a_2 Q^2}{2}\right), \quad \widetilde{H}(\omega) = \int \mathrm{d}\tau H(\tau) \exp(i\omega\tau)$

The tau-model ○● ○○○○ ○○○ Elongation?

Summary

Applications

BEC in the au-model

Assume a Lévy distribution for *H*(*τ*)
 Since no particle production before the interaction,
 H(*τ*) is one-sided.
 Characteristic function is

 $\widetilde{H}(\omega) = \exp\left[-\frac{1}{2}\left(\Delta \tau |\omega|\right)^{\alpha} \left(1 - i\operatorname{sign}(\omega)\tan\left(\frac{\alpha \pi}{2}\right)\right) + i\omega\tau_{0}\right], \quad \alpha \neq 1$ where

- α is the index of stability
- τ_0 is the proper time of the onset of particle production
- $\Delta \tau$ is a measure of the width of the dist.

• Then,
$$R_2$$
 depends on Q , a_1 , a_2
 $R_2(Q, a_1, a_2) = \gamma \left\{ 1 + \lambda \cos \left[\frac{\tau_0 Q^2(a_1 + a_2)}{2} + \tan \left(\frac{\alpha \cdot \pi}{2} \right) \left(\frac{\Delta \tau Q^2}{2} \right)^{\alpha} \frac{a_1^{\alpha} + a_2^{\alpha}}{2} \right] \right\} \cdot \exp \left[- \left(\frac{\Delta \tau Q^2}{2} \right)^{\alpha} \frac{a_1^{\alpha} + a_2^{\alpha}}{2} \right] \right\} \cdot (1 + \epsilon Q)$

Elongation?

Summary

Applications

BEC in the au-model

$$R_{2}(Q, \boldsymbol{a_{1}}, \boldsymbol{a_{2}}) = \gamma \left\{ 1 + \lambda \cos \left[\frac{\tau_{0}Q^{2}(\boldsymbol{a_{1}} + \boldsymbol{a_{2}})}{2} + \tan \left(\frac{\alpha \pi}{2} \right) \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{\boldsymbol{a_{1}^{\alpha}} + \boldsymbol{a_{2}^{\alpha}}}{2} \right] \\ \cdot \exp \left[- \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{\boldsymbol{a_{1}^{\alpha}} + \boldsymbol{a_{2}^{\alpha}}}{2} \right] \right\} \cdot (1 + \epsilon Q)$$

Simplification:

- Particle production begins immediately, $\tau_0 = 0$
- effective radius, *R*, defined by $R^{2\alpha} = \left(\frac{\Delta \tau}{2}\right)^{\alpha} \frac{a_1^{\alpha} + a_2^{\alpha}}{2}$
- Then $R_{2}(Q) = \gamma \left[1 + \lambda \cos \left((R_{a}Q)^{2\alpha} \right) \exp \left(- (RQ)^{2\alpha} \right) \right] \cdot (1 + \epsilon Q)$ where $R_{a}^{2\alpha} = \tan \left(\frac{\alpha \pi}{2} \right) R^{2\alpha}$ Compare to sym. Lévy parametrization: $R_{2}(Q) = \gamma \left[1 + \lambda \qquad \exp \left[-|rQ|^{-\alpha} \right] \right] (1 + \epsilon Q)$

3-jet Results on Simplified τ -model from L₃ Z decay

Elongation?

Applications

Summary of Simplified au-model

	α	<i>R</i> (fm)	R _a (fm)	CL
2-jet	$0.41 \pm 0.02^{+0.04}_{-0.06}$	$0.79 \pm 0.04^{+0.09}_{-0.19}$	$0.69 \pm 0.04^{+0.21}_{-0.09}$	57%
3-jet	$0.35\pm0.01^{+0.03}_{-0.04}$	$1.06 \pm 0.05^{+0.59}_{-0.31}$	$0.85 \pm 0.04^{+0.15}_{-0.05}$	76%
3-jet	0.41 \pm fixed	0.93 ± 0.03	0.76 ± 0.01	38%
2-jet	$0.44\pm0.01^{+0.05}_{-0.02}$	$0.78\pm0.04^{+0.09}_{-0.16}$		49%
3-jet	$0.42\pm0.01^{+0.02}_{-0.04}$	$0.98 \pm 0.04^{+0.55}_{-0.14}$	—	10%
3-jet	$0.44 \pm \text{fixed}$	0.87 ± 0.01	—	3%

- consistent values of α
- $R_a^{2\alpha} = \tan\left(\frac{\alpha\pi}{2}\right) R^{2\alpha}$ to 0.5σ for 2-jet and to 1.5σ for 3-jet
- Simplified \(\tau\)-model works well
- R seems to be larger for 3-jet than for 2-jet events

p. 14

The tau-model ○○○○ ○●○ Elongation

Summary

Applications

Full τ -model for 2-jet events

- τ -model predicts dependence on m_t , $R_2(Q, m_{t1}, m_{t2})$
- Parameters α , $\Delta \tau$, τ_0 are independent of $m_{\rm t}$
- λ (strength of BEC) can depend on $m_{\rm t}$

The tau-model

Elongation?

Summary

Applications

Summary of au-model

- *τ*-model with a one-sided Lévy proper-time distribution describes BEC well
 - in simplified form it provides a new parametrization of *R*₂(*Q*) for both 2- and 3-jet events,
 - in full form for 2-jet events, $R_2(Q, m_{t1}, m_{t2})$
 - both *Q* and *m*_t-dependence described correctly
 - Note: we found $\Delta \tau$ to be independent of m_t $\Delta \tau$ enters R_2 as $\Delta \tau Q^2/m_t$ In Gaussian parametrization, r enters R_2 as $r^2 Q^2$ Thus $\Delta \tau$ independent of m_t corresponds to $r \propto 1/\sqrt{m_t}$
- BUT, what about elongation?

The tau-mode 00 0000 0000 Elongation?

Summar

Applications

Elongation?

- Previous elongation results used fits of Gaussian or Edgeworth
- But we find that Gaussian and Edgeworth fit R₂(Q) poorly
- τ -model predicts no elongation and fits the data well
- Could the elongation results be an artifact of an incorrect fit function?
 or is the *τ*-model in need of modification?
- So, we modify *ad hoc* the *τ*-model description to allow elongation and see what we get

roduction	The tau-model	Elongation?	Summary	Applications
)	00 0000 000	000		000

Elongation in the Simplified τ -model? LCMS: $Q^2 = Q_L^2 + Q_{side}^2 + Q_{out}^2 - (\Delta E)^2$ $= Q_L^2 + Q_{side}^2 + Q_{out}^2 (1 - \beta^2)$, $\beta = \frac{p_{1out} + p_{2out}}{E_1 + E_2}$ Replace $R^2 Q^2 \Longrightarrow A^2 = R_L^2 Q_L^2 + R_{side}^2 Q_{side}^2 + R_{out}^2 Q_{out}^2$ Then in τ -model, $R_2(Q_L, Q_{side}, Q_{out}) = \gamma \left[1 + \lambda \cos \left(\tan \left(\frac{\alpha \pi}{2} \right) A^{2\alpha} \right) \exp \left(-A^{2\alpha} \right) \right]$ $\cdot (1 + \epsilon_L Q_L + \epsilon_{side} Q_{side} + \epsilon_{out} Q_{out})$

for 2-jet events: τ -model $\begin{pmatrix} R_{side}/R_{L} \text{ (fm)} \\ 0.61 \pm 0.02 \\ 0.64 \pm 0.02 \\ 0.64 \pm 0.02 \\ 0.64 \pm 0.02 \\ 0.68 \\$

The tau-model

Elongation?

Summary

Applications

Direct Test of Q²-only Dependence

$$1. \quad Q^2 = Q_{\rm LE}^2 + Q_{\rm side}^2 + Q_{\rm out}^2$$

2.
$$Q^2 = Q_L^2 + Q_{side}^2 + q_{out}^2$$

In τ -model for case 1

where $Q_{LE}^2 = Q_L^2 - (\Delta E)^2$ inv. boosts along thrust axis where $q_{out} = Q_{out}$ boosted (β) along out direction to rest frame of pair

$$R_{2}(Q_{\text{LE}}, Q_{\text{side}}, Q_{\text{out}}) = \gamma \left[1 + \lambda \cos \left(\tan \left(\frac{\alpha \pi}{2} \right) B^{2\alpha} \right) \exp \left(-B^{2\alpha} \right) \right] b$$

where $B^{2} = R_{\text{LE}}^{2} Q_{\text{LE}}^{2} + R_{\text{side}}^{2} Q_{\text{side}}^{2} + R_{\text{out}}^{2} Q_{\text{out}}^{2}$
 $b = 1 + \epsilon_{\text{LE}} Q_{\text{LE}} + \epsilon_{\text{side}} Q_{\text{side}} + \epsilon_{\text{out}} Q_{\text{out}}$

and comparable expression for case 2, $R_2(Q_L, Q_{side}, q_{out})$

Introd	uctior
00	
0	
0	

The tau-mode

Elongation?

Summary

Applications

Direct Test of **Q**²-only Dependence

Compare fits with all 'radii' free to fits with all 'radii' constrained to be equal

case 1 0.46 ± 0.01 0.46 ± 0.01 α $R_{\rm LE}$ (fm) 0.84 ± 0.04 0.71 ± 0.04 $R_{\rm side}/R_{\rm LE}$ 0.60 ± 0.02 $R_{\rm out}/R_{\rm LE}$ 0.986 ± 0.003 difference χ^2/DoF $14886/\overline{14540}$ $\Delta \chi^2 = 296/2$ 14590/14538 CL 38% 2% ≈ 0 case 2 0.41 ± 0.01 0.44 ± 0.01 ▶ fits2 α $R_{\rm L}$ (fm) 0.96 ± 0.05 0.82 ± 0.04 $R_{\rm side}/R_{\rm L}$ 0.62 ± 0.02 $r_{\rm out}/R_{\rm L}$ 1.23 ± 0.03 difference $\overline{\chi^2/D}oF$ $11430/10649 \quad \Delta \chi^2 = 464/2$ 10966/10647 CL 10^{-7} 2% ≈ 0

Dependence on components of Q is strongly preferred.

Q Dependence

 $\begin{array}{ll} \text{case 2, } R_2(\textit{Q}_L,\textit{Q}_{\text{side}},\textit{q}_{\text{out}}) \text{ vs.} \\ \textit{Q}_L \text{ for } & \textit{Q}_{\text{side}},\textit{q}_{\text{out}} < 0.08 \, \text{GeV} \\ \textit{Q}_{\text{side}} \text{ for } & \textit{Q}_L,\textit{q}_{\text{out}} < 0.08 \, \text{GeV} \\ \textit{q}_{\text{out}} \text{ for } & \textit{Q}_L,\textit{Q}_{\text{side}} < 0.08 \, \text{GeV} \end{array}$

Dependence on components of *Q* is preferred.

1.2

troduction C	The tau-model 00 0000 000	Elongation? oo ooo	Summary	Applications

Summary

- *R*₂ depends, to some degree, separately on components of *Q*, *i.e.*, on *Q*
- contradicts τ -model, where dependence is on Q, not on \vec{Q}
- Nevertheless, *τ*-model with a one-sided Lévy proper-time distribution succeeds:
 - Simplified, provides a new parametrization of *R*₂(*Q*) which works well
 - R₂(Q, m_{t1}, m_{t2}) successfully fits R₂ for 2-jet events both Q- and m_t-dependence described correctly
- But dependence of R_2 on components of Q implies τ -model is in need of modification Perhaps, a should be different for transverse/longitudinal $\overline{x}^{\mu}(p^{\mu}) = a \tau p^{\mu}, \qquad a = 1/m_t$ for 2-jet

The tau-model

Elongation 00 000 Summary

Applications

Emission Function of 2-jet Events.

In the τ -model, the emission function in configuration space is

$$S(\vec{x},\tau) = \frac{1}{\overline{n}} \frac{\mathrm{d}^4 n}{\mathrm{d}\tau \mathrm{d}\vec{x}} = \frac{1}{\overline{n}} \left(\frac{m_{\mathrm{t}}}{\tau}\right)^3 H(\tau) \rho_1 \left(\vec{p} = \frac{m_{\mathrm{t}}\vec{x}}{\tau}\right)$$

For simplicity, assume $\rho_1(\vec{p}) = \rho_y(y)\rho_{p_t}(p_t)/\overline{n}$ $(\rho_1, \rho_y, \rho_{p_t} \text{ are inclusive single-particle distributions})$ Then $S(\vec{x}, \tau) = \frac{1}{\overline{n}^2}H(\tau)G(\eta)I(r)$ Strongly correlated $x, p \Longrightarrow$ $\eta = y$ $r = p_t \tau/m_t$ $G(\eta) = \rho_y(\eta)$ $I(r) = \left(\frac{m_t}{\tau}\right)^3 \rho_{p_t}(rm_t/\tau)$

So, using experimental $\rho_y(y)$, $\rho_{p_t}(p_t)$ dists. and $H(\tau)$ from BEC fits, we can reconstruct *S*. expt. – Factorization OK

The tau-mode

Elongation'

Summary

Applications

Emission Function of 2-jet Events.

"Boomerang" shape Particle production is close to the light-cone

The tau-mode oo oooo ooo Elongation

Summary

Applications

Emission Function of 2-jet Events.

Integrating over z,

Particle production is close to the light-cone

Introduction	The lau-mouer	LIUNGAUUT	Summary	Applications
00	00	00		000
0	0000	000		•
0	000			
		0		
		$\alpha_{\rm s}$		
		-		
• 11.	A parton abower l	anda ta a fraatal	in momontum	00000
• LL/	A parton shower i	eaus lo a fractar	In momentum	space
				•
tra	ctal dimension is l	related to $\alpha_{\rm s}$	G	illetateon et al
nu				usiaison oi al.

Applications

Csörgő et al.

- Lévy dist. arises naturally from a fractal, or random walk, or anomalous diffusion Metzler and Klafter, Phys.Rep.**339**(2000)1.
- strong momentum-space/configuration space correlation of τ -model \Longrightarrow fractal in configuration space with same α
- generalized LPHD suggests particle dist. has same properties as gluon dist.
- Putting this all together leads to

$$\alpha_{\rm s}=\frac{2\pi}{3}\alpha^2$$

- Using our value of α = 0.47 \pm 0.04 yields $\alpha_{\rm s}$ = 0.46 \pm 0.04
- This value is reasonable for a scale of 1–2 GeV, where production of hadrons takes place *cf.*, from τ decays $\alpha_{\rm s}(m_{\tau} \approx 1.8 \,{\rm GeV}) = 0.34 \pm 0.03$ PDG

Since $2-\pi$ BEC only at small Q

$$Q = \sqrt{-(p_1 - p_2)^2} = \sqrt{M_{12}^2 - 4m_2^2}$$

 $R_2(Q) = \frac{\rho(Q)}{\rho_0(Q)}$

integrate over other variables:

p. 27

LCMS

The usual parametrization assumes a symmetric Gaussian source

But, there is no reason to expect this symmetry in $e^+e^- \rightarrow q\bar{q}$. Therefore, do a 3-dim. analysis in the Longitudinal Center of Mass System (LCMS): $\overrightarrow{P_1+P_2}$

Boost each π -pair along event axis (thrust or sphericity) $p_{L1} = -p_{L2}$

 $ec{p}_1+ec{p}_2$ defines 'out' axis

 $Q_{\text{side}} \perp (Q_{\text{L}}, Q_{\text{out}})$

 \mathbf{p}_1 **Q**_{out} Q event :

< □ > < □ > < 亘 > < 亘 > < 亘 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

🕩 advantage 🔪 🔹

LCMS

Advantages of LCMS:

$$\begin{array}{lll} Q^2 &=& Q_{\rm L}^2 + Q_{\rm side}^2 + Q_{\rm out}^2 - (\Delta E)^2 \\ &=& Q_{\rm L}^2 + Q_{\rm side}^2 + Q_{\rm out}^2 \left(1 - \beta^2\right) & \text{ where } \beta \equiv \frac{p_{\rm out\,1} + p_{\rm out\,2}}{E_1 + E_2} \end{array}$$

Thus, the energy difference,

and therefore the difference in emission time of the pions couples only to the out-component, $Q_{\rm out}$.

Thus,

 $Q_{\rm L}$ and $Q_{\rm side}$ reflect only spatial dimensions of the source $Q_{\rm out}$ reflects a mixture of spatial and temporal dimensions.

Fit Results Simplified au-model

parameter	two-jet	three-jet
λ	$0.63 \pm 0.03^{+0.08}_{-0.35}$	$0.92\pm0.05^{+0.06}_{-0.48}$
α	$0.41 \pm 0.02^{+0.04}_{-0.06}$	$0.35\pm0.01^{+0.03}_{-0.04}$
<i>R</i> (fm)	$0.79 \pm 0.04^{+0.09}_{-0.19}$	$1.06 \pm 0.05^{+0.59}_{-0.31}$
$R_{\rm a}$ (fm)	$0.69 \pm 0.04^{+0.21}_{-0.09}$	$0.85\pm0.04^{+0.15}_{-0.05}$
$\epsilon \; (\text{GeV}^{-1})$	$0.001 \pm 0.002^{+0.005}_{-0.008}$	$0.000 \pm 0.002^{+0.001}_{-0.007}$
γ	$0.988 \pm 0.005^{+0.026}_{-0.012}$	$0.997 \pm 0.005^{+0.019}_{-0.002}$
$\chi^2/{\rm DoF}$	91/94	84/94
confidence level	57%	76%

Fit Results Simplified au-model

parameter	two-jet	three-jet
λ	$0.61 \pm 0.03^{+0.08}_{-0.26}$	$0.84 \pm 0.04^{+0.04}_{-0.37}$
lpha	$0.44 \pm 0.01^{+0.05}_{-0.02}$	$0.42\pm0.01^{+0.02}_{-0.04}$
<i>R</i> (fm)	$0.78 \pm 0.04^{+0.09}_{-0.16}$	$0.98 \pm 0.04^{+0.55}_{-0.14}$
$\epsilon \; (\text{GeV}^{-1})$	$0.005 \pm 0.001 \pm 0.003$	$0.008 \pm 0.001 \pm 0.005$
γ	$0.979 \pm 0.002^{+0.009}_{-0.003}$	$0.977 \pm 0.001 ^{+0.013}_{-0.008}$
$\chi^2/{\sf DoF}$	95/95	113/95
confidence level	49%	10%

Fit Results Full τ -model for 2-jet events

m _t regio	<i>m</i> t regions (GeV)		average		
m_{t1}	m_{t2}	$m_{\rm t}~({\rm GeV})$		level	λ
		<i>Q</i> < 0.4	all	(%)	
0.14 – 0.26	0.14 – 0.22	0.19	0.19	10	0.39 ± 0.02
0.14 – 0.34	0.22 - 0.30	0.27	0.27	48	0.76 ± 0.03
0.14 – 0.46	0.30 - 0.42	0.37	0.37	74	$\textbf{0.83} \pm \textbf{0.03}$
0.14 – 0.66	0.42 - 4.14	0.52	0.52	13	0.97 ± 0.04
0.26 – 0.42	0.14 – 0.22	0.25	0.26	22	0.53 ± 0.02
0.34 – 0.46	0.22 - 0.30	0.32	0.33	33	$\textbf{0.80} \pm \textbf{0.03}$
0.46 – 0.58	0.30 - 0.42	0.43	0.44	34	0.91 ± 0.04
0.66 – 0.86	0.42 – 4.14	0.65	0.65	66	1.01 ± 0.05
0.42 – 0.62	0.14 – 0.22	0.34	0.34	17	$\textbf{0.41} \pm \textbf{0.03}$
0.46 – 0.70	0.22 - 0.30	0.41	0.41	55	0.64 ± 0.03
0.58 – 0.82	0.30 - 0.42	0.52	0.52	59	0.70 ± 0.04
0.86 – 1.22	0.42 – 4.14	0.80	0.81	24	0.66 ± 0.05
0.70 – 4.14	0.22 - 0.30	0.59	0.65	4	0.37 ± 0.04
0.82 – 4.14	0.30 - 0.42	0.71	0.76	11	0.56 ± 0.05

Fit Result $R_2(Q, m_{t1}, m_{t2})$

parameter	
λ	$0.58 \pm 0.03^{+0.08}_{-0.24}$
α	$0.47\pm0.01^{+0.04}_{-0.02}$
Δau (fm)	$1.56 \pm 0.12^{+0.32}_{-0.45}$
$\epsilon \; (\text{GeV}^{-1})$	$0.001 \pm 0.001 \pm 0.003$
γ	$0.988 \pm 0.002^{+0.006}_{-0.002}$
$\chi^2/{\rm DoF}$	90/95
confidence level	62%

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Fit Results elongation in τ -model for 2-jet events

λ	$\textbf{0.49} \pm \textbf{0.02}$
α	$\textbf{0.46} \pm \textbf{0.01}$
$R_{ m L}$ (fm)	$\textbf{0.85}\pm\textbf{0.04}$
$R_{ m side}/R_{ m L}$	0.61 ± 0.02
$R_{ m out}/R_{ m L}$	$\textbf{0.66} \pm \textbf{0.02}$
$\epsilon_{\rm L} \ ({\rm GeV^{-1}})$	0.001 ± 0.001
$\epsilon_{\rm side} \ ({\rm GeV^{-1}})$	-0.076 ± 0.003
$\epsilon_{\rm out} \ ({\rm GeV^{-1}})$	-0.029 ± 0.002
γ	1.011 ± 0.002
χ^2/DoF	14847/14921
CL	66%

Fit Results of direct tests for 2-jet events

case 1	λ	0.51 ± 0.03	0.49 ± 0.03
	α	$\textbf{0.46} \pm \textbf{0.01}$	$\textbf{0.46} \pm \textbf{0.01}$
	$R_{ m LE}$ (fm)	$\textbf{0.84} \pm \textbf{0.04}$	0.71 ± 0.04
	$R_{ m side}/R_{ m LE}$	$\textbf{0.60} \pm \textbf{0.02}$	1
	$R_{\mathrm{out}}/R_{\mathrm{LE}}$	$\textbf{0.986} \pm \textbf{0.003}$	1
	$\epsilon_{\rm LE}~({\rm GeV^{-1}})$	0.001 ± 0.001	$\textbf{0.000} \pm \textbf{0.001}$
	$\epsilon_{\rm side}~({\rm GeV^{-1}})$	-0.069 ± 0.003	-0.064 ± 0.003
	$\epsilon_{\rm out} \ ({\rm GeV^{-1}})$	-0.032 ± 0.002	-0.035 ± 0.002
	γ	1.010 ± 0.002	1.012 ± 0.002
	$\chi^2/{\sf DoF}$	14590/14538	14886/14540
	CL	38%	2%

Fit Results of direct tests for 2-jet events

case 2	λ	$\textbf{0.65} \pm \textbf{0.03}$	$\textbf{0.57} \pm \textbf{0.03}$
	α	$\textbf{0.41} \pm \textbf{0.01}$	$\textbf{0.44} \pm \textbf{0.01}$
	$R_{ m L}$ (fm)	$\textbf{0.96} \pm \textbf{0.05}$	$\textbf{0.82}\pm\textbf{0.04}$
	$R_{ m side}/R_{ m L}$	$\textbf{0.62}\pm\textbf{0.02}$	1
	$r_{\rm out}/R_{\rm L}$	$\textbf{1.23}\pm\textbf{0.03}$	1
	$\epsilon_{\rm L} \ ({\rm GeV^{-1}})$	0.004 ± 0.001	$\textbf{0.003} \pm \textbf{0.001}$
	$\epsilon_{\rm side}~({\rm GeV^{-1}})$	-0.067 ± 0.003	-0.059 ± 0.003
	$\epsilon_{\rm out} \ ({\rm GeV^{-1}})$	-0.022 ± 0.003	-0.029 ± 0.002
	γ	1.000 ± 0.002	1.003 ± 0.002
	$\chi^2/{ m DoF}$	10966/10647	11430/10649
	CL	2%	10 ⁻⁷

p. 44

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(Loading movie...)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

p. 51

Integrating over *z*,

Integrating over *z*,

Integrating over *z*,

