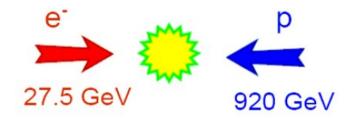
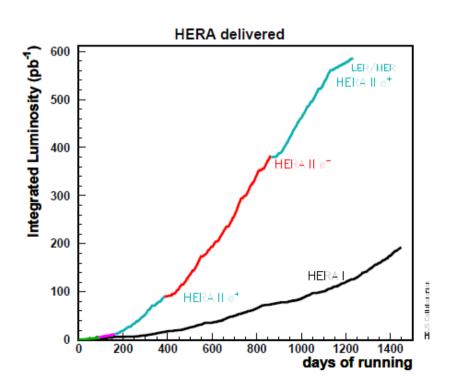
<u>Searches for Physics beyond the</u> <u>Standard Model at HERA</u>

Antje Hüttmann (DESY) for the H1 and ZEUS collaborations

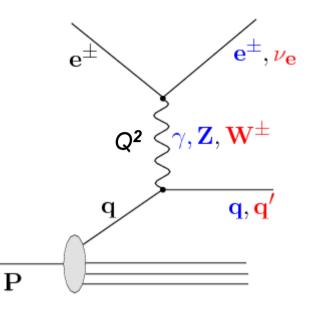

XL International Symposium on Multiparticle Dynamics September 25, 2010

<u>Outline</u>

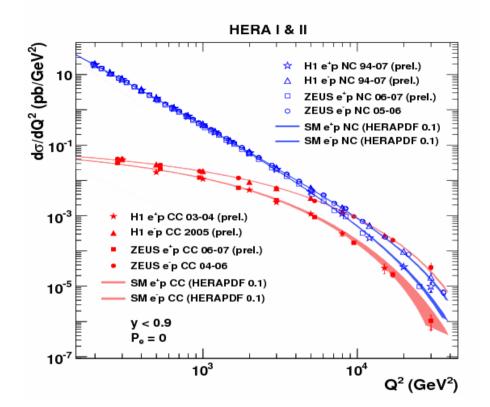
- The HERA collider
- Deep Inelastic Scattering (DIS)
- Model based searches
 - Quark radius
 - Contact interactions
 - Leptoquarks
 - Squark production in RPV SUSY
 - Excited fermions
- Model independent searches
 - Isolated leptons and missing p_T
 - Multi-leptons


The HERA Collider

- World's only *ep* collider, located at DESY in Hamburg
- In operation from 1992-2007



Center of mass energy: $\sqrt{s} = 318 \text{ GeV}$


- Two collider experiments: H1 and ZEUS
- 0.5 fb⁻¹ of data collected by each experiment

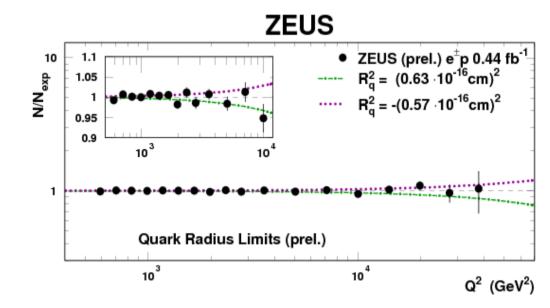
Deep Inelastic Scattering (DIS)

- NC: γ or Z exchanged, e[±] in final state
- CC: W^{\pm} exchanged, v_e in final state
- Q² gives the resolving power
- New physics would appear at high Q² (i.e. small scale)

 Excellent agreement between data and SM predictions (HERAPDF) over many orders of magnitude

Quark Radius

 Spatial distribution of the quark charge would reduce the SM cross section at high momentum transfer Q²:


$$\frac{d\sigma}{dQ^2} = \frac{d\sigma^{SM}}{dQ^2} \cdot \left[1 - \frac{R_q^2}{6}Q^2\right]^2$$

 $\mathbf{R}_{\mathbf{q}}$: root mean square radius of the electroweak charge distribution in the quark

 Excellent agreement with SM expectation → limits set using full HERA data (95% CL)

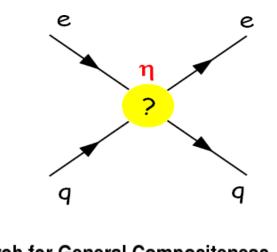
H1: $R_q < 0.65 \cdot 10^{-18} \text{ m}$ ZEUS: $R_q < 0.63 \cdot 10^{-18} \text{ m}$

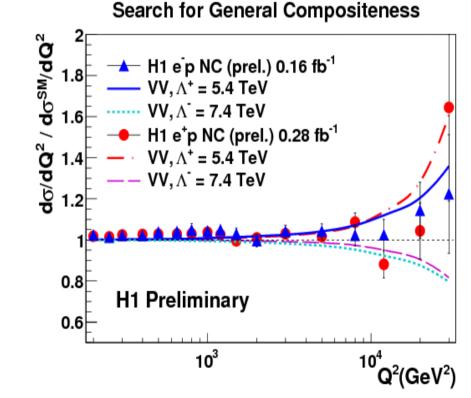
Limit below 1/1000 of proton radius!

Contact Interactions

- Effective theory describing low energy effects from physics at much higher energy scales $\Lambda \gg \sqrt{s}$
- Could alter SM DIS distributions at high Q²
- Vector-type eeqq CI:

$$\mathcal{L}_{CI} = \sum_{a,b=L,R}^{q=u,d} \eta^q_{ab} (\overline{e}_a \gamma_\mu e_a) (\overline{q}_b \gamma^\mu q_b)$$


General models:

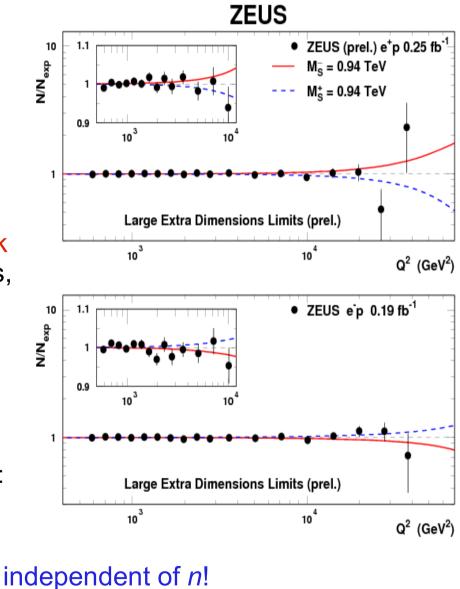

$$\eta^q_{ab}=\pm 4\pi/\Lambda^2$$

 No deviations from NC DIS seen by both H1 and ZEUS → limits set on 19 models with different helicity structure:

H1: $\Lambda > 3.7 - 7.4$ TeV

ZEUS: Λ > 3.8 – 8.9 TeV

Antje Hüttmann - Searches for Physics beyond the Standard Model at HERA

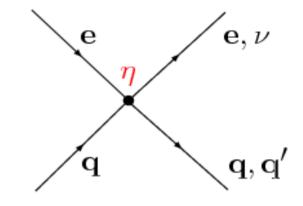

95% CL

Large Extra Dimensions

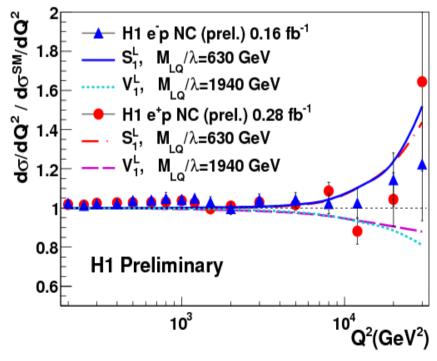
- ADD (Arkani-Hamed, Dimopoulos, Dvali) model: space time is 4+n dimensional
- gravity can propagate into the extra dimensions
- Fundamental Planck scale M_S in 4+n dimensions can be ~ 1TeV
- Strength of gravitational and electroweak interactions comparable at high energies, hierarchy problem solved
- Virtual graviton exchange contribution to $eq \rightarrow eq$ scattering described by contact interaction with effective coupling $\eta_G \sim \pm 1/M_S$
- Limits set by both H1 and ZEUS (95% CL):

 ${
m H1}: M_S^+ \,>\, 0.90\,{
m TeV},\, M_S^- \,>\, 0.91\,{
m TeV}$

 ${
m ZEUS}: M_S^+,\,M_S^-\,>\,0.94\,{
m TeV}$

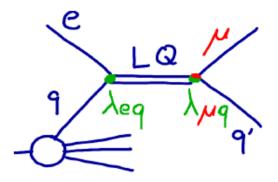

First Generation Leptoquarks

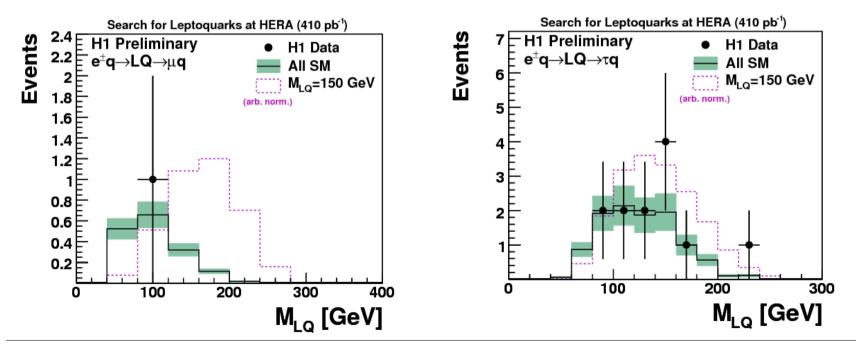
- Scalar or vector bosons carrying both lepton and baryon number, color charge and fractional electric charge
- Buchmüller-Rückl-Wyler model: SM symmetry, lepton and baryon number conserved
- Experimental constraints: LQs couple either to LH or to RH fermions, LQ couplings flavor diagonal
- \rightarrow 7 scalar and 7 vector 1st generation LQs, same final states as NC/CC DIS
- Heavy LQ exchange can be described by a four fermion contact interaction with effective coupling $\eta \sim \lambda^2/M_{LQ}^2$
- Limits set by H1 and ZEUS (95% CL):


H1: $M_{LQ}/\lambda > 0.4 - 1.94$ TeV

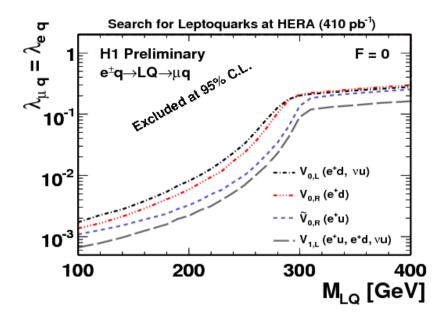
ZEUS: *M_{LQ}*/λ > 0.41 - 1.88 TeV

depending on the LQ type

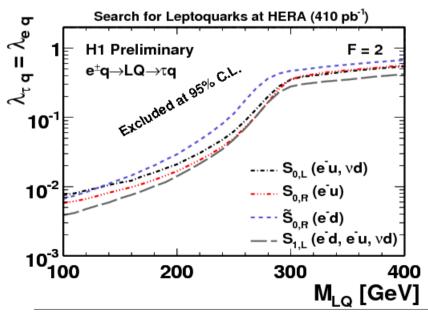




Lepton Flavor Violation (I)


- If LQ couplings not assumed as flavor diagonal, LQs can mediate LFV:
 - $ep
 ightarrow LQ
 ightarrow \mu X$
 - $ep \rightarrow LQ \rightarrow \tau X$

- H1 used full HERA data to look for final states with μ or τ and at least one jet
- No deviations from SM \rightarrow limits set on the Yukawa coupling λ as a function of the LQ mass


Lepton Flavor Violation (II)

Assuming

$$\lambda_{eq} = \lambda_{\mu q} = \sqrt{4\pi\alpha} = 0.3$$
 and $\lambda_{\tau q} = 0$:

M_{LQ} < 304-530 GeV excluded, depending on LQ type (95% CL)

Assuming

$$\lambda_{eq} = \lambda_{ au q} = \sqrt{4\pi lpha} = 0.3 \quad ext{and} \quad \lambda_{\mu q} = 0:$$

M_{LQ} < 272-450 GeV excluded, depending on LQ type (95% CL)

Squark Production in RPV SUSY (I)

- In RPV SUSY single resonant squark production possible in *ep* collisions
- Squarks decay to I+q (DIS-like final states) or to quark and gaugino (→ cascade decays)
- No deviations from SM in any of the 17 relevant final states seen → limits set

H1 Data (Prelim)

M_{Squark}=150 GeV

300

M_e [GeV]

400

All SM

Events

12

10

vMJ Channel

100

Search for Squarks in R SUSY at HERA(e⁺p, 255 pb⁻¹)

200

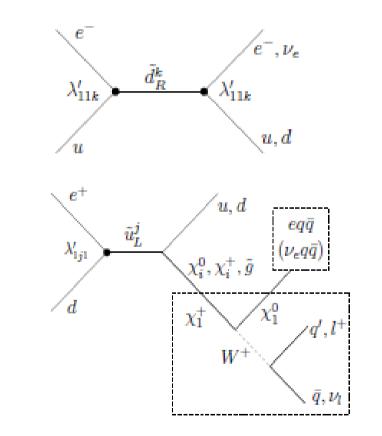
Events

10⁴

 10^{3}

10²

10


1

n

eg Channel

100

R-parity: $R_p = (-1)^{L+3B+2S}$ SM particles: +1 SUSY particles: -1

200

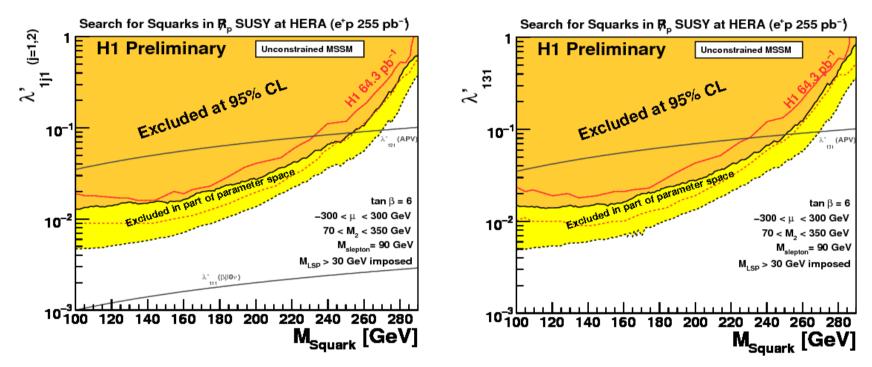
Search for Squarks in 🗛 SUSY at HERA(e p, 183 pb 1)

(arb. norm.

H1 Data (Prelim)

M_{Squark}=150 GeV

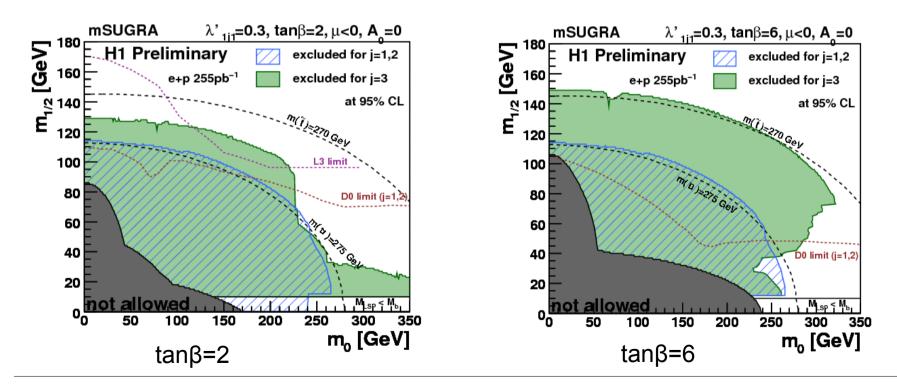
300


M_{rec,v} [GeV]

400

All SM

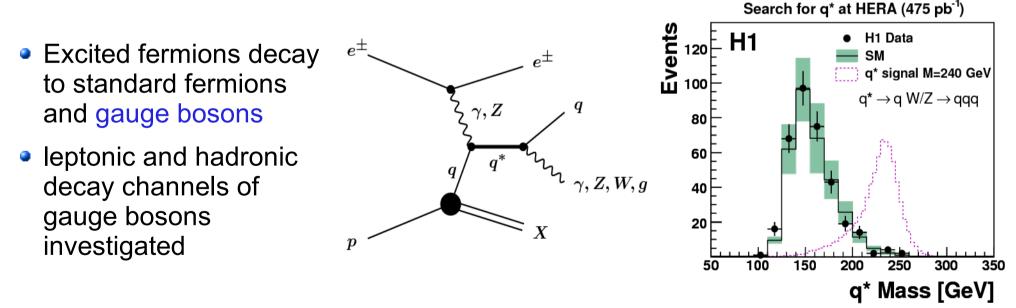
Squarks in RPV SUSY (II)


- Limits set using full H1 data
- Scan on accessible SUSY parameter space done

• Limits assuming a Yukawa coupling of electromagnetic strength: $M(\tilde{u_L}, \tilde{c_L}, \tilde{t_L}) > 275 \text{ GeV for } \lambda'_{1j1} = \sqrt{4\pi\alpha} = 0.3$ $M(\tilde{d_R}, \tilde{s_R}, \tilde{b_R}) > 290 \text{ GeV for } \lambda'_{11k} = 0.3$

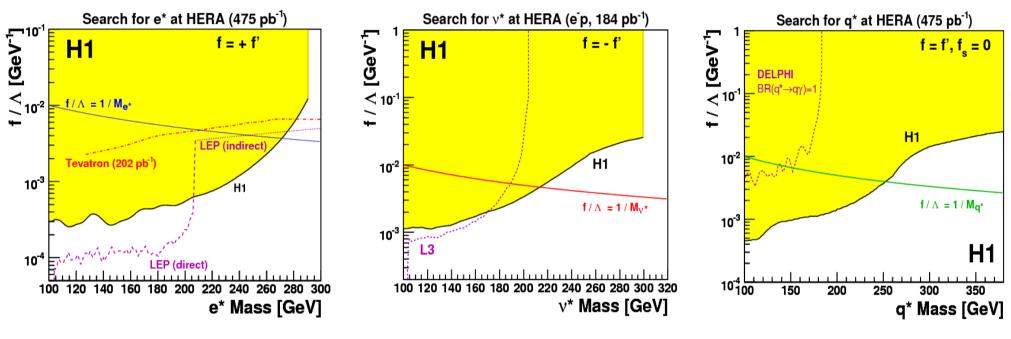
Squarks in RPV SUSY (III)

- Minimal Supergravity (mSUGRA) model: only four free parameters and one sign
- m₀ (m_{1/2}): universal scalar (gaugino) mass at the GUT scale
- Limits set in the m_0 m_{1/2} plane assuming $\,\lambda_{1j1}'=\sqrt{4\pilpha}=0.3$
- Dashed black lines indicate curves of constant squark $(ilde{u_L}, ilde{t_1})$ mass
- HERA limits extend beyond D0 limits



Excited Fermions (I)

- Observation would be direct evidence for compositeness (fermion substructure)
- Compositeness could explain the three lepton/quark families and their mass hierarchy
- Excitation/de-excitation described by effective Lagrangian:


$${\cal L}_{int}=rac{1}{2oldsymbol{\Lambda}}\overline{F}_R^*\sigma^{\mu
u}\left[goldsymbol{f}rac{ au^a}{2}W^a_{\mu
u}+g'oldsymbol{f}'rac{Y}{2}B_{\mu
u}+g_soldsymbol{f}_srac{\lambda^a}{2}G^a_{\mu
u}
ight]F_L~+~h.c.$$

 Λ : compositeness scale *f*, *f*', *f*_S: coupling parameters associated to SM gauge groups

Excited Fermions (II)

H1 analyzed the full HERA data, no deviations from SM observed in any channel \rightarrow limits set on f// as a function of the excited fermion mass (95% CL)

Mass limits assuming $f/\Lambda = 1/M_{f^*}$

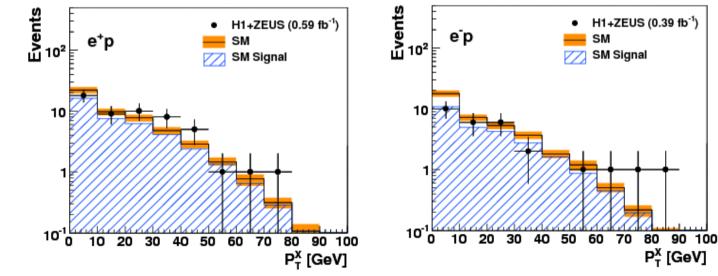
- *M*e* > 272 GeV
- *M_v** > 213 GeV
- *Mq** > 252 GeV

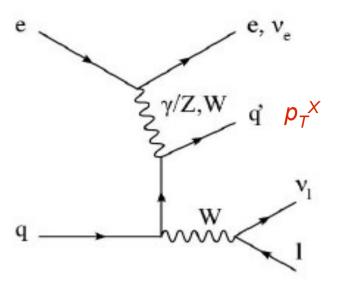
Tevatron:

q* analyzed

assuming f_s=1

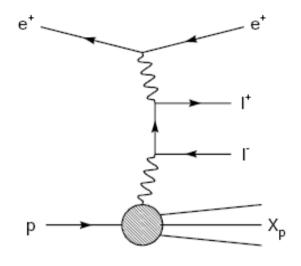
(not shown here)

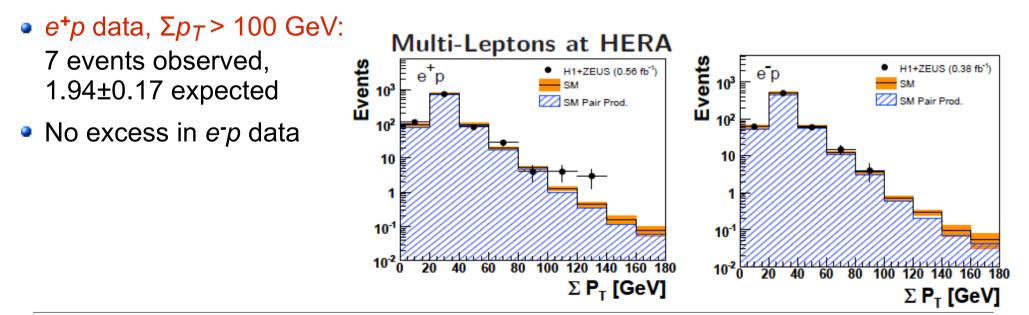

Isolated Leptons and Missing p_T


- Look for events with isolated leptons and missing p_T
- Main corresponding SM process: single W production
- Search for new phenomena: anomalous single top production, stop decay,...
- H1 and ZEUS results combined, L = 0.98 fb⁻¹

• e^+p data, $p_T^X > 25$ GeV:

23 events observed, 14.0±1.9 expected

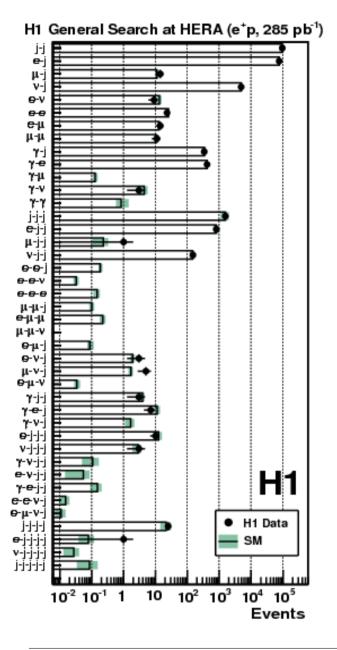

No excess in e⁻p data



Multi-Leptons

- Look for events with at least 2 isolated high-p_T electrons or muons (topologies: ee, μμ, eμ, eee, eμμ)
- Main production process in SM: γ - γ interactions
- SM expectation small at high invariant mass, high p_T of the leptons → look for deviations from SM, would be indication of new phenomena (e.g. exotic resonances such as H^{±±})

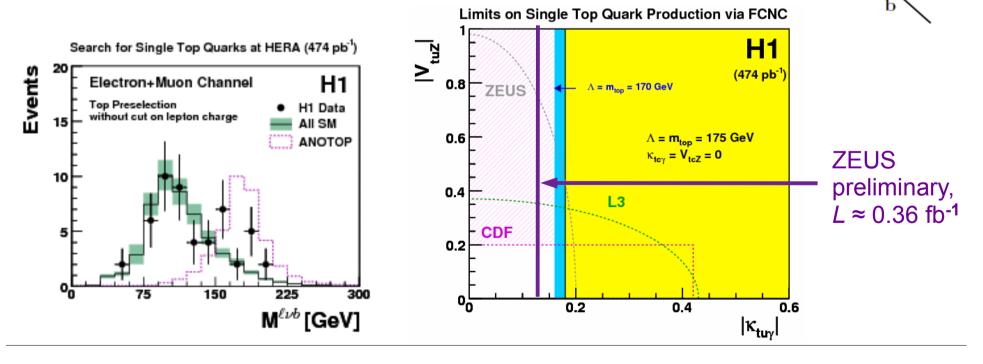
H1 and ZEUS combined their results (L=0.94 fb⁻¹)



<u>Summary</u>

- Searches for new physics have been performed by H1 and ZEUS with the full data sets of 0.5 fb⁻¹ per experiment
- Standard Model very healthy no signs of new physics at HERA observed
- Limits set on various BSM scenarios

Backup

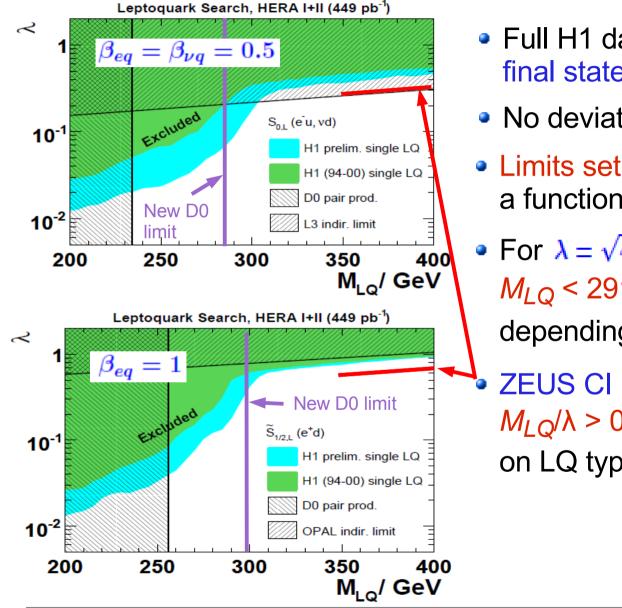

General Searches

- Model independent generic search for final states with ≥ 2 high-p_T objects (e, μ, jet, γ, ν), separately for e⁺p and e⁻p collisions
- Complete H1 data analyzed (L=0.46 fb⁻¹)
- At least one event in 27 topologies
- Events found e.g. in multi-lepton analysis are found again
- Look for possible deviations from SM in total event number and in Σp_T and M_{all} distributions
- Statistical analysis used to quantify the significance of the deviations
- Good agreement with SM, all deviations consistent with statistical fluctuations
- Number of fluctuations given the large number of search channels is consistent

Anomalous Single Top Production

- Top quarks at HERA can only be singly produced
- SM cross section negligible (σ < 1fb⁻¹), but production predicted by several BSM theories → observation would be clear indication of new physics
- Full HERA data analyzed by both H1 and ZEUS
- No deviations from SM seen \rightarrow limits set on couplings $\kappa_{tu\gamma}$, v_{tuZ} (95% CL)

Antje Hüttmann - Searches for Physics beyond the Standard Model at HERA


 γ/Z^0

 $\kappa_{tu\gamma}/v_{tuZ}$

u

 $\bar{\mathbf{q}}/\bar{l}$

First Generation Leptoquark Limits

- Full H1 data analyzed for NC/CC-like final states
- No deviations from SM seen
- Limits set on Yukawa coupling λ as a function of the LQ mass (95% CL)

• For $\lambda = \sqrt{4\pi\alpha} = 0.3$: $M_{LQ} < 291-330$ GeV excluded, depending on LQ type

ZEUS CI limit (94-07 prel.): $M_{LQ}/\lambda > 0.41-1.88$ TeV, depending on LQ type (95% CL)