Multiparton interactions in ep scattering at HERA

Hannes Jung (DESY, Univ. Antwerp)

on behalf of H1 & ZEUS collaborations

- change title to: underlying event structures in ep scattering at HERA
- Outline
 - earlier HERA measurements
 - investigations of the underlying event at HERA
 - ala CDF, ATLAS & CMS
 - do we have evidence for multiparton interactions ?

Underlying event study in a clean environment

- Study of jet production and underlying event structures in ep:
 - photoproduction
 - smooth transition from pointlike to hadronlike interaction
 - DIS
 - pointlike interaction, important as benchmark checks (not reported here)

Earlier measurements

- ZEUS: (Nuclear Physics B 792 (2008) 1-47)
- 3 jets in photoproduction $E_T > 6 \text{ GeV}$
 - measurement of x_{γ}

- **H**]:(Z.Phys.C70:17-30,1996.)
- 2 jets in photoproduction
 - measurement of energy flow outside jets

• Models including multiparton interactions come closer to measurements !

Models for underlying events

Multiparton interaction model (a ala PYTHIA)

$$\sigma_{hard}(p_{T\,min}^2) = \int_{p_{T\,min}^2} dp_T^2 \frac{d\sigma_{hard}(p_T^2)}{dp_T^2}$$

- depends on parton density
- parton evolution scheme

H. Jung, Multiparton interactions in ep scattering at HERA, ISMD 2010, Antwerp

per event !

possible solution:

Partonic cross section exceeds

total cross section at small pt>1 GeV

more than one partonic interaction

Inclusive jet x-section in γp

- Event selection
- $\begin{array}{rcl} Q^2 & < & 1 \ {\rm GeV}^2 \\ E_T^{jet} & > & 17 \ {\rm GeV} \\ -1 < & \eta^{jet} & < 2.5 \end{array}$
- Non Perturbative (NP) correction determined by PYTHIA MC
- minimum pt of secondary scattering: $p_{T\ min}^{sec}$
- NP effect:

$$\frac{\sigma^{MC}_{w/oMPI}}{\sigma^{MC}_{all}}$$

• NP corrections can be large ightarrow 40% in large η region

Incluisve jet x-section in γp

ZEUS-prel-10-003 **Event selection** ZEUS **400** dσ/dη^{jet} (pb) $Q^2 < 1 \,\mathrm{GeV}^2$ • ZEUS (prel.) 189 pb⁻¹ $E_T^{jet} > 17 \text{ GeV}$ NLO (GRV-HO) 300 $-1 < \eta^{jet} < 2.5$ NP correction determined by 200 **PYTHIA MC** minimum pt of secondary scattering: $p_{T min}^{sec}$ $E_{T}^{jet} > 21 \text{ GeV}$ 100 $Q^2 < 1 \text{ GeV}^2$ $\sigma^{MC}_{w/oMPI}$ 0.2 < y < 0.85NP effect: $\overline{\sigma^{MC}_{all}}$ 0 rel. diff. to NLO 0.5 jet energy scale uncertainty 0 NP corrections not needed for theoretical uncertainty -0.5 $E_T > 21 \text{ GeV}$ -1 -0.5 0.5 1.5 0 2

Models for underlying events

- Parton radiation ala CCFM (CASCADE)
- unordered parton radiation but also different parton densities

 Partonic cross section does not exceed

total cross section at small pt>1 GeV ONLY one partonic interaction per event !

Underlying events in photoproduction

• Event selection: $Q^2 < 0.01 \ {
m GeV}^2$

0.3 < y < 0.65

- Dijets (inclusive kt algorithm) $p_T^{jet} > 5~{
 m GeV}$ $|\eta^{jet}| < 1.5$
- charged particles

$$p_T > 0.15 \text{ GeV}$$

 $|\eta| < 1.5$

- high activity region:
 - transverse region with largest

H. Jung, Multiparton interactions in ep scattering at HERA, ISMD 2010, Antwerp

$$\mathcal{L} = 48 \, pb^{-1}$$

 $E_e = 27.6 \text{ GeV}, E_p = 920 \text{ GeV}$

- Measured charged particle spectra are unfolded to hadron level:
- Systematics: $\sim 3\%$
 - track finding, vertex reconstruction efficiency, nuclear interaction
 - hadronic energy scale

Pythia simulation with multiparton interactions is closer to measurement !

H. Jung, Multiparton interactions in ep scattering at HERA, ISMD 2010, Antwerp

next to leading jets

charged particle multiplicities

CASCADE describes high xgamma region well, but is too low in low xgamma
CASCADE has different parton shower mechanism.

Effect of parton shower

PYTHIA parton shower is not able to reproduce transverse activity !

Conclusions

- BEWARE: corrections due to multiparton interactions can be sizeable !
 - Detailed measurements are needed !
- Underlying event structure investigated in photoproduction dijet events
- Average charged particle multiplicity in toward and away region in azimuthal plane of jets increases with jet pt
 - reasonably well described by QCD simulations including parton shower (and multiparton interactions)
- Measured particle multiplicity in transverse region is above prediction form parton shower simulations
 - is best described including multiparton interactions
 - is also described with CCFM parton shower for $\,x_{\gamma}>0.7$
 - but additional contributions are needed for $x_\gamma < 0.7$
 - Amount of multiparton interaction needed to describe the measurement depends strongly on factorisation/parton shower model
- (Unfortunately) no unique evidence for Multiparton Interactions established at HERA !