Recent results on bottomonium spectroscopy from Babar

J. William Gary University of California, Riverside for the <u>Babar</u> Collaboration





# Babar experiment

- PEP-II rings: Asymmetric e+e- collider @ SLAC
- Collected data 1999-2008; data analysis still very active



- CPV in B decays, CKM physics <u>~465×10<sup>6</sup> Y(45)→BB events</u>
- ~650x10<sup>6</sup> e<sup>+</sup>e<sup>-</sup>  $\rightarrow$  c $\overline{c}$  events: 1<sup>st</sup> observation of D<sup>0</sup>- $\overline{D}^0$  mixing [2007]
- ~430x10<sup>6</sup> e<sup>+</sup>e<sup>-</sup>  $\rightarrow \tau^+\tau^-$  events (360 x combined LEP sample): LFV
- ISR events: unique access to low energy e<sup>+</sup>e<sup>-</sup> cross sections
- Spectroscopy

Topics

<u>Bottomonium</u>: Y(3S) sample

(I) Search for  $\eta_b$  using  $\gamma \rightarrow e^+e^-$  conversions (singlet L=0) [also uses the Y(2S) sample]

(II) Search for  $h_b(1P)$  state (singlet L=1)

(III) Observation of  $1D_{J=2}$  state (triplet L=2) [arXiv:1004.0175]

All results are preliminary

- $\rightarrow$  Spectrum below open-flavor threshold richer than charmonium
- $\rightarrow$  Masses & BFs important to test potential models & lattice QCD
- $\rightarrow$  Hadronic transitions probe non-perturbative QCD
- Bottomonium states with L=0,1 & S=1 → known since 1970s & 1980s
- Y(1D<sub>J=2</sub>) observed by CLEO (2004)
- η<sub>b</sub> by Babar (2008)
- h<sub>b</sub>(1P) state not yet observed



- $\rightarrow$  Spectrum below open-flavor threshold richer than charmonium
- $\rightarrow$  Masses & BFs test potential models & lattice QCD
- $\rightarrow$  Hadronic transitions probe non-perturbative QCD



- $\rightarrow$  Spectrum below open-flavor threshold richer than charmonium
- $\rightarrow$  Masses & BFs test potential models & lattice QCD
- $\rightarrow$  Hadronic transitions probe non-perturbative QCD
- Bottomonium states with L=0,1 & S=1 → known since 1970s & 1980s
- Y(1D<sub>J=2</sub>) observed by CLEO (2004)
- $\eta_b$  by Babar (2008)
- h<sub>b</sub>(1P) state not yet observed



- $\rightarrow$  Spectrum below open-flavor threshold richer than charmonium
- $\rightarrow$  Masses & BFs test potential models & lattice QCD
- $\rightarrow$  Hadronic transitions probe non-perturbative QCD
- Bottomonium states with L=0,1 & S=1 → known since 1970s & 1980s
- Y(1D<sub>J=2</sub>) observed by CLEO (2004)
- η<sub>b</sub> by Babar (2008)
- h<sub>b</sub>(1P) state not yet observed



= the states discussed here  $\eta_b$  and  $h_b$  : hyperfine mass splittings  $\rightarrow$  spin dependence of the  $q\overline{q}$  potential

- Bottomonium states with L=0,1 & S=1 → known since 1970s & 1980s
- Y(1D<sub>J=2</sub>) observed by CLEO (2004)
- η<sub>b</sub> by Babar (2008)
- h<sub>b</sub>(1P) state not yet observed





- $\eta_b$  discovered in the recoil  $\gamma$  spectrum in  $\underline{Y(3S)} \rightarrow \gamma \eta_b$
- Confirmed by Babar in Y(2S) [2009] and by CLEO in Y(3S) [2010]



New study:  $Y(3S) \& Y(2S) \rightarrow \gamma \eta_b$  using  $\gamma \rightarrow e^+e^-$ Converted photons: 5x better energy resolution (25 $\rightarrow$ 5 MeV)

Reconstructed  $E_{\gamma}$  in Y(3S)  $\rightarrow \gamma \eta_b$ MC events (CM frame)



Detection efficiency lower but still expect ~  $3\sigma$  significance  $\rightarrow$  independent measurement of  $\eta_b$  mass 5 monochromatic  $\gamma \textbf{s}$  in  $\eta_{b}$  region:

1-3)  $\chi_{bJ}(2p) \rightarrow \gamma_{2P} Y(1S)$ ; J=0,1,2 4) ISR e<sup>+</sup>e<sup>-</sup> $\rightarrow \gamma_{isr} Y(1S)$ 

5) Signal  $\gamma$ 



Bill Gary, ISMD 2010, Sept. 21, 2010

- Identify  $\gamma \rightarrow e^+e^-$  conversions ( $\chi^2$  test; require  $m_{\gamma} < 30$  MeV)
- Veto  $\gamma \rightarrow e^+e^-$  's that form a  $\pi^0$  candidate with any other  $\gamma$
- Other cuts: thrust, multiplicity
- $\chi^2$  fit to  $\gamma$  recoil energy spectrum  $\rightarrow$  Combinatoric background
  - $\rightarrow$  5 "peaking" components



 $\rightarrow$  Simultaneous fit to the Y(3S) & Y(2S) samples with the  $\eta_{b}$  mass a fitted parameter

Y(35) sample

#### Signal efficiency=1.4%



Bill Gary, ISMD 2010, Sept. 21, 2010



Bill Gary, ISMD 2010, Sept. 21, 2010

- Simultaneous fit to Y(2S) & Y(3S) sample  $\rightarrow \eta_b$ : 3.3 $\sigma$  (stat.) ; 2.6 $\sigma$  (stat.+syst.),
- Fitted  $\eta_b$  mass shifted +12 MeV from world average: significance of shift (~2.5 $\sigma$ ) under investigation
- Side-benefit of analysis: the separated  $Y(nS) \rightarrow \gamma \chi_{bJ}(n-1P) \rightarrow \gamma \gamma Y(1S)$  BFs

 $\rightarrow$  uncertainties reduced by ~3-4 compared to current world averages

| nS | mP | J | BF (x10 <sup>-3</sup> ) | PDG      | Improvement |
|----|----|---|-------------------------|----------|-------------|
| 3  | 2  | 1 | 13.0±0.3±0.7            | 10.7±1.9 | 2.5         |
| 3  | 2  | 2 | 9.6±0.3±0.5             | 9.3±1.7  | 2.9         |
| 2  | 1  | 1 | 25.2±0.6±1.2            | 24.2±5.7 | 4.2         |
| 2  | 1  | 2 | 14.4±0.5±0.8            | 15.7±3.0 | 3.2         |



Fitted  $\eta_b$  mass:

9403.3±2.4<sup>+0.9</sup> MeV

BABAR

preliminary

# (II) Search for $h_b(1P)$ state

Expect  $m_{h_b(1P)} = [m_{\chi_{b0}(1P)} + 3m_{\chi_{b1}(1P)} + 5m_{\chi_{b2}(1P)}] / 9 \approx 9900 \text{ MeV}$ 



#### Intrinsic width ~ 0.1 MeV

# Search for $h_b(1P)$



 Expected decays: h<sub>b</sub>→γη<sub>b</sub> (~41%), ggg (57%), γgg (2%) [Godfrey & Rosner, PR D66 (2002) 014012]

# Search for $h_b(1P)$

• Y(3S)  $\rightarrow \gamma h_b$  forbidden (*C*-parity) • Favored production mechanisms B[Y(3S)  $\rightarrow \pi^0 h_b$ ] ~ 4x10<sup>-4</sup> [Voloshin] B[Y(3S)  $\rightarrow \pi^+ \pi^- h_b$ ] ~ 10<sup>-5</sup> [Voloshin] ~10<sup>-3</sup>-10<sup>-4</sup> [KTY]

Voloshin, Sov. J. Nucl. Phys. 43 (1986) 1210 Kuang, Tuan & Yan, PR D37 (1988) 1210



- Expected decays: h<sub>b</sub>→γη<sub>b</sub> (~41%), ggg (57%), γgg (2%)
  [Godfrey & Rosner, PR D66 (2002) 014012]
- S/B enhanced by requiring monochromatic  $\gamma_m$ :  $h_b \rightarrow \gamma_m \eta_b$
- Expect  $E_{\gamma m}$  = 490 MeV (resolution 25 MeV)
- $h_c(1P)$  observed in analogous decay chain:  $\psi(2S) \rightarrow \pi^0 h_c$ ;  $h_c \rightarrow \gamma_m \eta_c$ [CLEO 2005; BES 2010]

# $Y(3S) \rightarrow \pi^0 h_b$ channel

- Reconstruct  $\pi^0 \rightarrow \gamma\gamma$  candidate [50 < m<sub> $\gamma\gamma$ </sub> < 200 MeV]
- Reject if a signal  $\pi^0 \rightarrow \gamma\gamma$ photon forms a  $\pi^0$  with any other photon (<15 MeV of m<sub> $\pi0$ </sub>)
- $\gamma$  helicity  $|{\rm cos} \Theta_h|{\rm <0.7}$  in  $\pi^0$  CM
- $\bullet$  Recoil mass against the  $\pi^0$

$$M_{recoil} \equiv \sqrt{(E_{Y(3S)}^* - E_{\pi^0}^*)^2 - (\vec{p}_{\pi^0}^*)^2}$$

(peaks at  $h_b$  mass for signal)

- Require a photon consistent with  $h_b \rightarrow \gamma_m \eta_b$ :  $420 < E_{\gamma_m}^* < 540 \text{ MeV}$
- Reject event if  $\gamma_{\rm m}$  forms a  $\pi^0$  candidate with any other photon
- Overall reconstruction efficiency ~ 22%



#### \* = CM [=Y(3S)] frame

# Recoil mass: $Y(3S) \rightarrow \pi^0 h_b$



- χ<sup>2</sup> fit: smooth combinatoric background + signal peak
- h<sub>b</sub> mass and yield free
  → <u>8682 ± 2981 signal events</u>
  ~3σ (stat.), 2.7σ (stat.+syst.)
- Fitted mass: <u>9903±4 MeV</u> agrees with expectation (9900)

• Product BF  
B[Y(3S) 
$$\rightarrow \pi^{0}h_{b}$$
] x B[ $h_{b} \rightarrow \gamma \eta_{b}$ ]  
= (3.3±1.1±0.4) x 10<sup>-4</sup>

→ agrees with Voloshin (1986) [=4 x 10<sup>-4</sup>]

[CLEO (1994):  $<2.7x10^{-3}$  for m<sub>hb</sub>=9.9 GeV]

# $Y(3S) \rightarrow \pi^+\pi^-h_b$ channel



\* = CM [=Y(3S)] frame

- Fully inclusive search (no  $h_b \! \rightarrow \! \gamma_m \eta_b$  requirement to increase efficiency)
- Reconstruction efficiency ~42%

# Recoil mass: $Y(3S) \rightarrow \pi^+\pi^-h_b$



### h<sub>b</sub> mass scan

→ No indication of a signal in the Y(3S) →  $\pi^+\pi^-h_b$  channel B[Y(3S) →  $\pi^+\pi^-h_b$ ] < 1.0×10<sup>-4</sup> at 90% CL for  $m_{hb}$  = 9.9 GeV [CLEO 1994: < 1.8×10<sup>-3</sup> for  $m_{hb}$ =9.9 GeV]



 $\rightarrow$  data more consistent with Voloshin

# (III) Observation of $1^3D_J$ state

 Predicted mass ~ 10160 ± 10 MeV [Godfrey & Rosner, PRD64 (2001) 097501]



- Predicted separation between triplet states ~ 5-12 MeV
- Expected intrinsic widths ~30 KeV << exptl. resolution

# CLEO [PRD70 (2004) 032001]

- Observation of  $Y(1^{3}D_{J=2}) \rightarrow \gamma\gamma Y(1S)$ (radiative decay channel)
- $4\gamma$  transition from the Y(3S) to the Y(1S)
- Mass: 10161.1 ± 0.6 ± 1.6 MeV
- Single state seen, interpreted as J=2 based on comparison of the measured & expected BFs and the observed γ energies
- Awaits confirmation of L, J, P



# Babar: $Y(1^{3}D_{J}) \rightarrow \pi^{+}\pi^{-}Y(1S)$

 $\rightarrow$  hadronic decay channel, with Y(1S)  $\rightarrow$  e<sup>+</sup>e<sup>-</sup> or  $\mu^+\mu^-$ 



- $\pi^+\pi^-l^+l^-$  invariant mass
  - $\rightarrow$  provides best Y(1<sup>3</sup>D<sub>J</sub>) mass resolution (~ 3 MeV)
  - $\rightarrow$  Smallest systematic uncertainties
- The L, J & parity P can be tested from the  $\pi^+\pi^-$  invariant mass, and angular distributions of the tracks

CLEO upper limit on branching fraction product:  $Y(3S) \rightarrow 2\gamma Y(1D) \rightarrow 2\gamma \pi^{+}\pi^{-}Y(1S) \rightarrow 2\gamma \pi^{+}\pi^{-}|^{+}|^{-} < 6.6 \times 10^{-6}$ or  $Y(1D) \rightarrow \pi^{+}\pi^{-}Y(1S) < 4\%$  @ 90% C.L.

## $Y(3S) \rightarrow \gamma \gamma Y(1D) \rightarrow \gamma \gamma \pi^{+} \pi^{-} Y(1S) \rightarrow \gamma \gamma \pi^{+} \pi^{-} ||^{+}|^{-}$

#### (1) <u>Charged tracks</u>:

- Require exactly 4 charged tracks
  - 2 identified as a  $\pi^+\pi^-$  pair
  - 2 identified as an  $e^+e^-$  or  $\mu^+\mu^-$  pair
- Y(1S) candidate: require

 $|m_{\rm Y(1S)} - m_{\mu+\mu-}| < 0.2 \ GeV \ , \ or \\ -0.35 < m_{\rm Y(1S)} - m_{e+e-} \ < 0.2 \ GeV \ (~3\sigma)$ 

and then constrain  $m_{\text{\tiny I+I-}}$  to the Y(1S) mass



3S

• Y(1D) candidate: combine Y(1S) candidate with  $\pi^+\pi^-$ 



Add 2 photons consistent with the decay chain to form a Y(3S) candidate ...

## $Y(3S) \rightarrow \gamma \gamma Y(1D) \rightarrow \gamma \gamma \pi^{+} \pi^{-} Y(1S) \rightarrow \gamma \gamma \pi^{+} \pi^{-} ||^{+}|^{-}$

#### (3) <u>Y(3S) candidate</u>: sanity checks

- Require Y(35) CM momentum < 0.3 GeV
- Y(3S) energy (resolution 25 MeV) equals sum of beam energies within 100 MeV
- $\rightarrow$  very loose, ~100% efficient for signal;

#### (4) Maximum Likelihood fit



- 3 signal peaks (J=1,2,3), mass and yield of each peak is floated
- All known backgrounds, which are small and non-peaking in the  $Y(1^3D_J)$  signal region







 $\rightarrow$  First observation of hadronic Y(1<sup>3</sup>D<sub>J</sub>) decays





| J | <b>Event yields</b>              | Significance (w.syst.) | Fitted mass value         |             |  |
|---|----------------------------------|------------------------|---------------------------|-------------|--|
| 1 | 10.6 <sub>-4.9</sub> +5.7        | 2.0 (1.8) <del>ග</del> |                           | CLEO:       |  |
| 2 | <b>33.9</b> <sub>-7.5</sub> +8.2 | 6.5 (5.8) <del>ග</del> | $10164.5 \pm 0.8 \pm 0.5$ | 10161.1±0.6 |  |
| 3 | <b>9.4</b> <sub>-5.2</sub> +6.2  | 1.7 (1.6) σ            |                           | ±1.6 MeV    |  |

Uncertainty of J=2 mass reduced by ~45%

# **Branching Fractions**



- $\rightarrow$  6 unknown BFs with efficiencies that differ by up to ~7.5%
- $\rightarrow$  Only 3 measured yields
- $\rightarrow$  Determine the 3 dominant BFs only
- → Ratios relative to the minor BFs fixed according to theory [Kwong & Rosner, PRD38 (1988) 279] 31

# Preliminary Branching Fractions

- BF = (yield bias) / [efficiency x N<sub>Y(35)</sub>]
- Efficiency  $\approx$  26% averaged over Y(1S)  $\rightarrow \mu^+\mu^-$  & e^+e^-, for J=1,2,3
- N<sub>Y(35)</sub> = 122 x 10<sup>6</sup> events

Branching fraction product for entire decay chain,

 $Y(3S) \rightarrow \gamma \chi_{bJ'}(2P) \rightarrow 2\gamma Y(1^{3}D_{J}) \rightarrow 2\gamma \pi^{+}\pi^{-}Y(1S) \rightarrow 2\gamma \pi^{+}\pi^{-}I^{+}I^{-},$ 

#### and for the dominant modes only:

| χ <sub>bJ′</sub> (2P) | 1 <sup>3</sup> D <sub>J</sub> | Product BF                                                        | 90% C.L. upper limit      |
|-----------------------|-------------------------------|-------------------------------------------------------------------|---------------------------|
| J'=1                  | J=1                           | (1.27 <sub>-0.69</sub> <sup>+0.81</sup> ±0.28) x 10 <sup>-7</sup> | < 2.50 x 10 <sup>-7</sup> |
| J'=1                  | J=2                           | (4.9 <sub>-1.0</sub> <sup>+1.1</sup> ±0.3) x 10 <sup>-7</sup>     |                           |
| J'=2                  | J=3                           | (1.34 <sub>-0.83</sub> <sup>+0.99</sup> ±0.24) x 10 <sup>-7</sup> | < 2.80 x 10 <sup>-7</sup> |

CLEO upper limit: < 6.6×10<sup>-6</sup>

### Compare Branching Fractions to theory

Divide measured branching fraction products by

- the known  $Y(3S) \rightarrow \gamma_1 \chi_b(\text{2P}) \text{ BF's}$
- the Kwong & Rosner predictions for the  $\chi_b(2P) \rightarrow \gamma_2 Y(1^3D)$  BF's

from J. Rosner. PRD67 (2003) 097504

| 1 <sup>3</sup> D <sub>J</sub> | BF [Y(1³D <sub>J</sub> )→π⁺π⁻Y <b>(1S)</b> ]    | 90% C.L.<br>upper limit | Kwang &<br>Yan (1981) | Ko<br>(1993) | Moxhay<br>(1988) |
|-------------------------------|-------------------------------------------------|-------------------------|-----------------------|--------------|------------------|
| J=1                           | (0.42 <sub>-0.23</sub> +0.27±0.10)%             | < 0.82%                 | 40%                   | 1.6%         | 0.20%            |
| J=2                           | (0.66 <sub>-0.14</sub> +0.15±0.06)%             |                         | 46%                   | 2.0%         | 0.25%            |
| J=3                           | (0.29 <sub>-0.18</sub> <sup>+0.22</sup> ±0.06)% | < 0.62%                 | 49%                   | 2.2%         | 0.27%            |

Kwang & Yan don't account for centrifugal barrier [see Kwong & Rosner, PRD38 (1988) 279]

CLEO limit < ~4% @ 90% C.L. already excludes Kwang & Yan Multiply predictions by 2/3 to obtain  $\pi^+\pi^-$  contribution:  $\rightarrow$  data halfway between Ko ~ 1.3% & Moxhay ~ 0.16%

### The $\pi^+\pi^-$ invariant mass

[T.-M. Yan, PRD22 (1980) 1652; Y.-P. Kuang et al., PRD37 (1988) 1210]



 $\chi^2$  probability for decay of a D, S, or  ${}^1P_1$  bottomonium state to  $\pi^+\pi^-Y(1S)$ : <u>84.6, 3.1, or 0.3%</u>

### Angle $\chi$ between the $\pi^+\pi^-$ & I<sup>+</sup>I<sup>-</sup> planes



Define  $\chi$  in the Y(1<sup>3</sup>D<sub>J=2</sub>) rest frame



|β|: depends on unknown helicity amplitudes, etc. → determine from data

Sign of  $\beta$ :  $(sign(\beta) = (-1)^{JP})$  P=parity

[J.R. Dell'Aquila & C.A. Nelson, PRD33 (1986) 80]

Select events in Y(1<sup>3</sup>D<sub>J=2</sub>) region: 10.155 to 10.168 GeV

Fit:  $\beta = -0.41 \pm 0.29 \pm 0.10 \rightarrow \text{consistent with } \underline{J=2} \& P=-1$ 

[were J odd, dN/d $\chi$  would decrease with increasing  $\chi$  for P=-1]  $_{_{35}}$ 

# Summary

#### Preliminary

- Collected World's largest sample of Y(3S) in 2008
- Converted photons in Y(3S) & Y(2S)  $\rightarrow \gamma \eta_b$ :
  - $\rightarrow$   $\eta_{b}$  observed @ 2.6  $\sigma$  significance (3.3  $\sigma$  stat.)
  - $\rightarrow$  Improvements in the  $\eta_{b}$  mass determination (under study)
  - → Improvement in  $\chi_{bJ}(2P) \rightarrow \gamma Y(1S)$  and  $\chi_{bJ}(1P) \rightarrow \gamma Y(1S)$  BFs (J=1,2) by factors of ~3-4
- Search for the  $h_b(1P)$  state
  - $\rightarrow$  No evidence for Y(3S)  $\rightarrow \pi^+\pi^-h_b(1P)$
  - → Evidence @ 2.7 $\sigma$  (~3 $\sigma$  stat.) for Y(3S) →  $\pi^0$  h<sub>b</sub>(1P)
- First observation of the  $Y(1^3D_J)$  through hadronic decays (6.2 $\sigma$ )
  - $\rightarrow$  Factor of 2 improvement in J=2 mass measurement
  - $\rightarrow$  First tests of L, J, P assignments





# Charmonium



Two D-wave states observed:  $\psi(3770)$  and  $\psi(4153)$   $\rightarrow$  Above open-flavor threshold, decay to DD, broad widths  $\rightarrow$  QCD calculations above open threshold more difficult  $\rightarrow$  Test of the calculations lacks precision

# Backgrounds

4 categories of background events within the fit interval In roughly decreasing order of importance, these are:

- 1.  $Y(3S) \rightarrow \gamma \chi_b(2P) \rightarrow \gamma \omega Y(1S)$ 
  - $\omega \rightarrow \pi^+\pi^-\pi^0$
  - $\omega \rightarrow \pi^{+}\pi^{-}$ , combine with a random (noise)  $\gamma$
- 2.  $Y(3S) \rightarrow \pi^+\pi^-Y(1S)$  with FSR  $\gamma's$
- 3. Y(3S)  $\rightarrow \eta Y(1S)$  with  $\eta \rightarrow \pi^+\pi^-\pi^0(\gamma)$
- 4.  $Y(3S) \rightarrow \gamma\gamma Y(2S) \text{ or } \pi^0 \pi^0 Y(2S)$ with  $Y(2S) \rightarrow \pi^+ \pi^- Y(1S)$

The backgrounds are small and non-peaking in the  $Y(1^3D_J)$  signal region 10.14 <  $m_{\pi+\pi-l+l-}$  < 10.18 GeV/c<sup>2</sup>

# Branching Fraction Calculation

#### e.g., for transitions through the $Y(1^3D_{J=2})$ state

$$N_{1D_{2}} = N_{3S} \left[ \left( \epsilon_{12}^{e} + \epsilon_{12}^{\mu} \right) \mathcal{B}_{3S \to 2P_{1}} \mathcal{B}_{2P_{1} \to 1D_{2}} \mathcal{B}_{1D_{2} \to \pi\pi\Upsilon(1S)} \mathcal{B}_{\Upsilon(1S) \to \ell\ell} \right. \\ \left. + \left( \epsilon_{22}^{e} + \epsilon_{22}^{\mu} \right) \mathcal{B}_{3S \to 2P_{2}} \mathcal{B}_{2P_{2} \to 1D_{2}} \mathcal{B}_{1D_{2} \to \pi\pi\Upsilon(1S)} \mathcal{B}_{\Upsilon(1S) \to \ell\ell} \right],$$

 $\epsilon_{J'J}$  = efficiency for the transition path through the  $\chi_{bJ'}$  and  $Y(1^3D_J)$ 

$$= N_{3S}\mathcal{B}_{3S \to 2P_{1}}\mathcal{B}_{2P_{1} \to 1D_{2}}\mathcal{B}_{1D_{2} \to \pi\pi\Upsilon(1S)}\mathcal{B}_{\Upsilon(1S) \to \ell\ell} \left[1 + \frac{(\epsilon_{22}^{e} + \epsilon_{22}^{\mu})\mathcal{B}_{3S \to 2P_{2}}\mathcal{B}_{2P_{2} \to 1D_{2}}}{(\epsilon_{12}^{e} + \epsilon_{12}^{\mu})\mathcal{B}_{3S \to 2P_{1}}\mathcal{B}_{2P_{1} \to 1D_{2}}}\right]$$
  
Quoted branching fraction product  
Kwong & Rosner

### $\pi^{+}$ helicity angle $\theta_{\pi^{+}}$



the  $\pi^+\pi^-$  would be emitted in an S-wave  $\Rightarrow \xi = 0$ 

For a D state with J=2, need  $L_{\pi\pi}=2$ dN/dcos $\theta_{\pi+} \sim 1 + \xi (3cos^2\theta_{\pi+}-1)/2$  Angle of  $\pi^+$  in  $\pi^+\pi^-$  rest frame wrt boost from Y(1<sup>3</sup>D<sub>J=2</sub>) frame



Select events in Y(1<sup>3</sup>D<sub>J=2</sub>) region: 10.155 to 10.168 GeV/c<sup>2</sup>

Fit:  $\xi = -1.0 \pm 0.4 \pm 0.1 \rightarrow \text{Disfavors S-wave hypothesis}$ Consistent with J=2 41