

Higgs searches at the LHC

Koji Nakamura(Univ. of Tokyo) On behalf of CMS and ATLAS collaborations

25th Sep, 2010

Introduction

- Evaluated by cross section scaling from 10/14 TeV study with full simulation. Not optimized to 7 TeV.
- Background study with real data
 - Performance of final state particles and data driven background estimations are performed using current luminosity of data. Especially for the fake background.

Standard Model Higgs Boson

- $gg \rightarrow H$ production dominates for all Higgs masses.
 - 10 times larger cross section than Tevatron
 - Need clean final state i.e. photons/leptons(γγ,WW,ZZ,ττ)
- VBF $qq \rightarrow qqH$ production is promising for the low mass region.
 - High pT forward jets can be tagged (γγ,ττ)
- Small WH/ZH cross section against background.
- Branching ratio:

ISMD 2010 @ Belgium

 $\sigma = 1.96 \,\mathrm{TeV}$

gg→H

MSSM scenario

- $\phi = (H,A,h)$, and H±
- Two parameters at tree level $(\tan\beta, M_A)$
- Signature at LHC
 - production:
 - gg→ φ, bb → bb φ dominant
 - 10 times larger cross section than SM (tanβ~40)
 - Branching ratio :
 - 90% bb, 10% ττ -- enhanced
 - WW and γγ are suppressed
 - μμ is also promising by clean signature and good mass resolution
 - need clean final state: i.e. ττ

What can we see at a first fb⁻¹?

25th Sep, 2010

What can we see at a first fb⁻¹?

25th Sep, 2010

H→WW→lvlv(Simulation)

Di-lepton final state with large missing energy

CMS result

- □ using Neural Network for the event selection.
- Counting experiment on the high output region

□ ATLAS result

- □ Cut based counting experiment.
- estimated limit by 250pb⁻¹ Luminosity steps

25th Sep, 2010

Performance Study for H→WW

Performance of W + fake lepton will be estimated by data driven way.

e.g. # of Fake bkg = [W + fake candidate] x [Fake rate]

Fake rate should be calculated "IDed lepton" divided by "fake candidate" by jet data.Electron Fake rateMuon Fake rate

25th Sep, 2010

MSSM A/h/H→ττ

Performance Study for $H \rightarrow \tau \tau$

Other significant contributions and combination

25th Sep, 2010

γγ and ZZ results from CMS

<u>н→үү</u>

Conservative option:

No reconstructed photon categories

Simple counting events in mass window

> Will be improved with photon category

4lepton signature (4e,4µ,2e2µ)

H→ZZ→IIII

 $H \rightarrow WW$ and $H \rightarrow ZZ$ searches have similar sensitivities for mH~200 GeV.

ISMD 2010 @ Belgium

Signal x-sec:

NNLO

γγ and ZZ results from ATLAS

H→ZZ→IIII

Н→үү

25th Sep, 2010

ISMD 2010 @ Belgium

Signal x-sec:

Combination (yy, WW, ZZ)

Again, all results are scaled from 10/14 TeV study!!

25th Sep, 2010

Conclusion

- LHC accumulated 4.0 pb⁻¹ of data already.
 - Certain performance and data driven background estimation studies are on-going.
- Sensitivity expectation scaled from 10/14 TeV results at 1 fb⁻¹ was shown by CMS and ATLAS.
- 7TeV optimized analysis and low mass results improvement are on-going with real data.
- First physics impact from LHC Higgs search will be
 H→WW and MSSM H→ττ (World best @<1fb⁻¹)

Thank you!

25th Sep, 2010

25th Sep, 2010

Sensitivity of $H \rightarrow WW \rightarrow IvIv$

25th Sep, 2010

Systematic effect

Difference between "Conservative" and "Optimistic" systematic uncertainties comes from background estimation uncertainty.