

Light hadron production studies in pp collisions at 0.9 and 7 TeV with the LHCb detector

XL International Symposium on Multiparticle Dynamics

21-25 September 2010

University of Antwerp, Belgium

Raluca Mureşan

Ecole Polytechnique Fédérale de Lausanne

On behalf of LHCb collaboration

У

5m

Magnet

5m

LHCb detector

M4 M5

20m

z

M3

M2

15m

ECAL HCAL SPD/PS

RICH2 M1

10m

Look for New Physics through precise measurements of CP violation and rare decays in the b-sector.

Forward single arm spectrometer - large and correlated bb quark production in the forward region.

Coverage: 15-300(250) mrad

LHCb data sample

7 TeV

0.9 TeV 6.8 μ b⁻¹ in the pilot run of 2009 and 0.31 nb⁻¹ in 2010

Physics reach

See also Jonathan Anderson talk on the Low-x pdf from LHCb on Thursday.

Pseudorapidity range

First LHCb public physics results - light hadron production - exploiting the interest for measurements in the forward region where production models were extrapolated not only in energy but also in rapidity.

LHCb fully instrumented in the forward region: tracking, ECAL, HCAL, counters lumi, muon, hadron PID

Light hadron production studies

Are the production/fragmentation mechanisms rapidity or p_t dependent? Different dominating mechanisms?

- \blacksquare K_S^0 cross-section 2009 pilot run data at 0.9TeV;
- Production ratios (preliminary):
 - $\overline{\Lambda}/K_S^0$ baryon vs. meson suppression in hadronisation;
 - $\bar{\Lambda}/\Lambda$, \bar{p}/p baryon number transport.
 - 2010 data @ 0.9 TeV and 7 TeV
- V⁰ studies prompt V⁰ produced at the PV or e.m or strong decays, only tracking & vertexing;
- **I** \bar{p}/p RICH particle identification.

K_S^0 production

Ideal first measurement for LHCb - high-purity selection without requiring particle identification

2009 Data

- Using the 6.8 μ b⁻¹ recorded in the pilot run;
- K⁰_S cross-section not measured before at 0.9 TeV;
- y and p_T range were extended;
- Main systematic contributions: luminosity \sim 12%, tracking efficiency \sim 10%

K_S^0 production

Important input for hadronization models, measured in bins of y and p_T and compared to LHCb MC and Perugia 0 (arXiv:1005.3457).

Physics Letters B 693 (2010) pp. 69-80.

V^0 ratio measurements

High-purity, prompt K_s^0 and Λ samples selection based on a combination of impact parameters (IP):

```
\nu = \ln IP^{+} + \ln IP^{-} - \ln IP^{V^{0}}
```

PV requirement ensures that only the V^0 coming from non-diffractive events are kept (model based definition PYTHIA 6 & PYTHIA 8).

Efficiency from LHCb-MC (PYTHIA & EvtGen) and GEANT simulation for prompt, non-diffractive events.

Ratios benefit from reduced systematic uncertainties since absolute luminosity not required.

0. 31 nb⁻¹ @ 0.9 TeV and 0.2 nb⁻¹ @ 7 TeV as V^0 s abound in minimum bias data: 5 K_S^0 & 1 Λ selected per 100 triggers in data at \sqrt{s} = 7 TeV.

Ratio of $\overline{\Lambda}/K_S^0$ higher than expectation at both energies.

Might be consistent with indications on the ratio of Λ to K_s^0 production at Tevatron (http://home.fnal.gov/~ skands/leshouches-plots).

Baryon number transport $\bar{\Lambda}/\Lambda$

Baryon number conservation requires the destroyed beam particles in inelastic non-diffractive collisions must be balanced by creation of baryons elsewhere. How close a baryon and the antibaryon are produced in the phase space?

Measurements lie significantly under MC predictions at 0.9 TeV;

Reasonable agreement farther from the beam (in y), at 7 TeV, where the ratio must be very close to the unity.

Protons @ LHCb

PID performance calibrated in data:

- **I** and p are obtained from $K_S^0 \to \pi^+\pi^-$ and $\Lambda \to p\pi^-$ selected with kinematic cuts only.
- Solution K come from the $\phi \to K^+K^-$ decay with one track identified by RICH and the other one is left unbiased for PID measurements.

High purity (anti)proton samples of 90-95% obtained over full LHCb acceptance.

15 MEvts @ 0.9 TeV and 13 MEvts @ 7 TeV for the \bar{p}/p .

Baryon number transport \bar{p}/p

Measured in bins of y and p_T . Below example results for the high p_t bins.

Baryon number transport \bar{p}/p

Big deviation in ratio from unity at low energy. Much less so at 7 TeV. Reasonable agreement observed with Perugia 0.

Systematics on the ratios

Most of the systematics cancel in the ratios. Remaining systematics relate mainly to MC, data comparisons.

Uncertainties	Errors
p, π interaction cross-sections	\sim 10%
V^0 production & interaction cross-sections	~10%
LHCb material description	<10%
Λ transverse polarisation	<1%
Selection cuts (dominated by PID)	1-14%
Ghost tracks	<2%
Acceptance asymmetries	\sim 2%
Non-prompt contamination	<1%

Ratio	Total
$\bar{\Lambda}/\Lambda$	\sim 2%
$\bar{\Lambda}/K_S^0$	2-12%
\bar{p}/p	3-14%

$$y_1 = y_2 + \ln\left(\frac{E_{b1}}{E_{b2}}\right)$$

probes scaling violations.

Consistency between the two measurements and

energy previous result.

FÉDÉRALE DE

Baryon number transport \bar{p}/p

Reasonable consistency with previous measurements.

Good agreement if the same p_t range is covered (high p_t).

 $\Delta y = y_b - y$

- LHCb produced unique minimum bias physics results exploiting the unique rapidity and transverse momentum acceptance of the experiment;
- Preliminary results for ratios of V⁰ and protons suggest lower baryon suppression and higher baryon transport in data than in the MC models investigated.
- Reasonable consistency with previous measurements.

STAY TUNED FOR THE LHCb PUBLICATIONS