

Understanding Jet Structure and Constituents: Track Jets and Jet Shapes at the ATLAS Detector

Seth Zenz (UC Berkeley and LBNL) On behalf of the **ATLAS** Collaboration

22 September 2010 XL International Symposium on Multiparticle Dynamics Antwerp, Belgium

- ATLAS and the Large Hadron Collider
- Prologue: Jets and their properties
- Jet Reconstruction and definitions
 - Calorimeter-based: topological clustering, associated tracks
 - Inner Detector-based: apply jet algorithm to tracks
- Data-Simulation comparison of jet constituents
 - Constituent multiplicity
 - Jet shapes
- Track-based jet measurements
 - Inclusive cross section
 - Charged particle fragmentation w.r.t. charged particle jets

The LHC and ATLAS

- Large Hadron Collider: <u>p-p</u>, Pb-Pb
- 2010-2011: 7 TeV CM energy, maximum luminosity: 1-2 x 10³² cm⁻²s⁻¹
- Ultimately: 14 TeV CM energy, max. lumi. ~5 x 10³⁴ cm⁻²s⁻¹

ATLAS

- 45m long, 25m diameter, 7000 tons
- 3-level trigger: reduce design beam-crossing rate of 40 MHz to ~200 Hz recorded

Data Collected So Far

- **ATLAS** uptime and data quality excellent
 - >94% for all subsystems
- Luminosity increasing rapidly
 - Note log scale!
- Moving steadily to • goal of 1 fb⁻¹ collected through 2011

Day in 2010

ATLAS Subdetectors

- ATLAS Calorimeters
 - Electromagnetic: Pb + Liquid Ar
 - Separate jets, e/γ
 - Hadronic
 - Central: Fe + scintillating tiles
 - Forward: Cu/W + Liquid Ar
 - Coverage: |η| < 4.9

- ATLAS Inner Detector
 - 3 silicon pixel layers
 - 4 double-sided silicon strip layers
 - Transition Radiation Tracker
 - 2.0 T solenoid magnet
 - Coverage: |η| < 2.5
 - σ/pT ~ 3.8x10⁻⁴ pT (GeV)

 Φ.015

And, of course, ATLAS got its name from the large toroidal magnetic field for the muon system... 22 September 2010 S. Zenz, ISMD 2010 Not used for this talk! 5

- Minimum Bias Trigger Scintillator (MBTS)
 - Polystyrene structures mounted on endcap calorimeter cryostat
 - 2 cm thick, Z = 3.6m
 - Acceptance: $2.09 < |\eta| < 3.48$
- Most plots in this talk triggered with 1 MBTS hit
 - ~100% efficiency for events with jets
- Jet and EM triggers based on sliding tower jet-finding in calorimeter
 - Jet shape plots use lowestthreshold jet trigger, which is 100% efficient for applicable jet momenta ($p_T > 60 \text{ GeV}$)

rrrr

Prologue: Jets and their Properties

- ATLAS jet measurements
 - Inclusive jet cross-section (see talk – A. Alonso)
 - New di-jet resonance limit (see talk – H. Peng)
- Major uncertainty: jet energy scale
- Pileup will impact *every* ATLAS measurement
 - Continuum from very soft interactions to dijets
- Need to verify modeling of QCD and soft physics that produces jet structure
- This talk: our knowledge so far, measurements to improve it...

- ATLAS and the Large Hadron Collider
- Prologue: Jets and their properties
- Jet Reconstruction and definitions
 - Calorimeter-based: topological clustering, associated tracks
 - Inner Detector-based: apply jet algorithm to tracks
- Data-Simulation comparison of jet constituents
 - Constituent multiplicity
 - Jet shapes
- Track-based jet measurements
 - Inclusive cross section
 - Charged particle fragmentation w.r.t. charged particle jets

Jet Reconstruction: Calorimeter

- Main constituent algorithm: topological clusters
 - Seed with cells with signal 4σ above noise
 - Extend with adjacent (3D) cells 2σ above noise
 - Add one final "layer" of cells above noise
- Apply anti-k_T jet algorithm (R=0.6, 0.4)
 - Cone-like
 - Infrared safe JHEP 04 (2008) 063
- Association of tracks with jet:
 - Select good-quality tracks (next slide)
 - Associate track with jet if: ΔR(Track, Jet) < R_{.let}

- Select good-quality tracks:
 - p_τ > 500 MeV, |η| < 2.5
 - Impact parameter requirements w.r.t primary vertex
 - $|d_0| < 1.5 \text{ mm}, |z_0 \sin\theta| < 1.5 \text{ mm}$
 - Silicon hit requirements
 - Analysis: 6 SCT hits, innermost pixel hit + outer pixel or inner SCT hit
 - Calorimeter matching: 6 SCT hits, any pixel hit
- Anti- k_{τ} jet algorithm (R=0.6, 0.4) applied to selected tracks
 - Track jet analysis requirements: jet $p_{\tau} > 4$ GeV, $|\eta| < 0.57$
- Complement to calorimeter jet measurements
 - Independent systematic errors
 - Very low momentum emergence of jets from soft collisions

Overview

- ATLAS and the Large Hadron Collider
- Prologue: Jets and their properties
- Jet Reconstruction and definitions
 - Calorimeter-based: topological clustering, associated tracks
 - Inner Detector-based: apply jet algorithm to tracks
- Data-Simulation comparison of jet constituents
 - Constituent multiplicity
 - Jet shapes

- N.B. Not corrected for detector effects
- Track-based jet measurements
 - Inclusive cross section
 - Charged particle fragmentation w.r.t. charged particle jets

Constituent Multiplicity

• Sensitive to soft particle modeling

Jet Shapes

• Shape depends on event generator, but generally good agreement

22 September 2010

S. Zenz, ISMD 2010

Overview

- ATLAS and the Large Hadron Collider
- Prologue: Jets and their properties
- Jet Reconstruction and definitions
 - Calorimeter-based: topological clustering, associated tracks
 - Inner Detector-based: apply jet algorithm to tracks
- Data-Simulation comparison of jet constituents
 - Constituent multiplicity
 - Jet shapes
- Track-based jet measurements
 - Inclusive cross section
 - Charged particle fragmentation w.r.t. charged particle jets

- Charged particle jets: apply anti-k_{τ} algorithm to all charged primary particles with p_{τ} > 500 MeV
 - No direct comparison to pQCD
 - Can compare to Monte Carlo generators
- Inclusive cross section measurement
 - Correction method: bayesian iterative unfolding
 - Systematic uncertainties, R = 0.6:

Uncertainty	4 - 6 GeV	14 - 15 GeV	28 - 30 GeV	40 - 45 GeV	70 - 80 GeV
Tracking efficiency	+4% -4%	+ 7% - 7%	+8% -7%	+ 8% - 8%	+ 9% - 8%
Fragmentation/U.E.	+2% -1%	+0.4% -3%	+2% -0.0%	+ 2% - 1%	+5% -11%
High p_{T} tracks	negligible	negligible	+0.1% -0.7%	+ 1% - 4%	+6% -10%
Unmatched reconstructed jets	±1.0%				
Mismodelling in φ	±1.6%				
Luminosity	±11%				

Inclusive cross section

- d²တ_{္အ}/dridp_T [µb/GeV] ([n_{ja}| < 0.57) ၂၂ Pythia6 ATLAS MC09 R = 0.4---- Pythia6 Tune A (100) - - - - Pythia6 Tune 110 -
 - Pythia6 Tune 117 - 🔻 - Pythia6 Tune 129 -. ⊖-. Pythia6 Perugia-0 (320) -+-- Phojet E $Ldt = 370 \,\mu b$ 10^{-1} ATLAS Preliminary 10^{-2} 10⁻² anti-k, Charged Particle Jets R=0.4 MC-Data)/Data (MC-Data)/Data 0.8 0.6 ۵ -0.4 10 30 10 20 40 50 60 70 80 Charged Particle Jet p_ [GeV]
 - --- Pythia6 ATLAS MC09 R = 0.6Pythia6 ATLAS AMBT 1 Pythia6 Tune A (100) - 🚣 - Pythia6 Tune 110 - 🔂 --- Pythia6 Tune 117 - - ⊖ - Pythia6 Perugia-0 (320) -⊶∻⊶ Pythia8 --*-- Phojet Ldt = 370 µb ATLAS Preliminary anti-k, Charged Particle Jets R=0.6 20 30 40 50 60 70 80 Charged Particle Jet p_ [GeV]
- Cross-section best modeled by Phojet **Disagrees with Pythia**

d²တ_{္အ}/dndp₇ [µb/GeV] ([η_{ja}| < 0.57) 0.05 Data 2010 √s = 7 TeV

Fragmentation measurement

- z correction uses simple bin-by-bin factors from simulation
- Systematic uncertainties
 - Track-finding efficiency
 - Event generator tuning

- Impacted by jet fragmentation, underlying event
- Best described by AMBT1 Tune of Pythia

- First ATLAS measurements and studies of jet constituents done
 - Number of constituents in fair agreement, improves with $p_{\tau} > 1 \text{ GeV}$
 - Jet shapes good agreement
 - Charged particle jet momentum Pythia prediction too high at low end
 - Charged particle jet z AMBT1 tune good, suggests further tuning
- Studies so far give confidence in jet measurements, further measurements and refinements planned...
- Foundations being laid for years of exciting discoveries ahead!

Extras

Charged Fraction

- $f_{track} = \Sigma p_{T,track} / p_{T,jet}$
- Good between simulated events and data!
- f_{track} > 1 mostly due to
 calorimeter fluctuating low

BERKELEY LAE

More on Unfolding

BERKELEY LAB

- Inclusive charged particle jet cross section determined from track jet distributions using Bayesian Iterative unfolding
- Corrects for:
 - Jet-f nding eff ciency
 - Reconstructed track jets not matched to charged particle jets
 - Bin-to-bin migration of reconstructed jets due to tracking eff ciency and resolution smearing
 - Corrections determined from migrations in simulated sample
- Correction of *z* done with simple correction factors in bins of jet p_T correction factors vary slowly with p_T
 S. Zenz, ISMD 2010 22

Z_{track}

- Unfolding validated with toy samples
 - Simulated MC tracks smeared
- Also tested with fully-simulated
 MC pseudodata
 - Produce response matrix with Pythia 6 main sample
 - Apply to reconstructed track jets in fully-simulated Pythia 8 sample – quite different truth distribution from Pythia 6
 - Compare unfolded result to original Pythia 8 truth
 - Agrees within uncertainties that are correlated between samples

R = 0.6 z distributions (1)

R = 0.6 z distributions (2)

10 GeV < p_{T,Jet} < 15 GeV

 $15 \text{ GeV} < p_{_{T,\text{Jet}}} < 24 \text{ GeV}$

R = 0.4 z distributions (1)

 $4 \text{ GeV} < p_{T, \text{Jet}} < 6 \text{ GeV}$

22 September 2010

S. Zenz, ISMD 2010

R = 0.4 z distributions (2)

15 GeV < p_{T,Jet} < 24 GeV

22 September 2010

S. Zenz, ISMD 2010

Raw track multiplicity in track jets

- Anti- k_{T} algorithm is related to k_{T} operates by iteratively combining constituent pairs with smallest "distance" d
 - Difference with $k_{\!_{\rm T}}$ is in the exponent in the definition of "distance"
 - Shown recently to be infrared safe JHEP 04 (2008) 063
 - Results are **cone-like**: well-contained inside radius D in (y,ϕ) space and thus approximately contained inside radius D in (η,ϕ) space
- Algorithm: make a list of distances between constituents d_{ij} and distances to beam axis d_{iR} (defined below), proceed iteratively:
 - If smallest value is a d_{ii} , replace them on the list with their sum
 - If smallest value is a d_{iB} , call it a jet and remove it from the list
 - Continue until the list is empty

$$d_{ij} = \min(p_{T,i}^{-2}, p_{T,j}^{-2}) \frac{[\Delta R_y(i,j)]^2}{D^2} \qquad d_{iB} = p_{T,i}^{-2}$$

22 September 2010

S. Zenz, ISMD 2010