OVERVIEW OF DIFFRACTION AT THE LHC

Sparsh Navin

University of Birmingham

United Kingdom

ISMD 2010, Antwerp

Many thanks to my supervisors and colleagues on ALICE, ATLAS and CMS

Outline

- Diffractive events topology
- Detector set-up ALICE, ATLAS & CMS

See TOTEM results - G. Catanesi (tomorrow)

- Results
 - 1) Diffraction
 - 1) Fractions
 - 2) Kinematics
 - 2) Dijets and central exclusive production
- Outlook

Diffraction

Detector set-up - ALICE

ATLAS Forward detectors

Central Detector covers

Inner Tracker $|\eta| < 2.5$ Hadronic Calorimeter $|\eta| < 4.9$ Muon Spectrometer $|\eta| < 2.7$

EM calorimeter $|\eta| < 3.2$

M. Taševský – Diffraction 2010, Italy

Forward detectors - CMS

CASTOR:

- W absorber/quartz plates
- @14m from IP
- 5.2 < η < 6.6
- 16 segments in φ
 (EM/HAD) segments in z
 (no η segmentation)

Hadron Forward:

- @11.2m from interaction point
- rapidity coverage:
- $3 < |\eta| < 5$
- Steel

absorbers/quartz fibers (Long+short fibers)

• 0.175x0.175 η/ϕ segmentation

A. Vilela Pereira – Inclusive diffraction at 7TeV – 12/08/2010

p_T and η coverage

7

Differing Models

	SD		DD	
\sqrt{s}	ΡΥΤΗΙΑ	PHOJET	PYTHIA	PHOJET
900 GeV	22.2%	19.2%	12.2%	6.4%
2.36 TeV	21.0%	16.2%	12.8%	5.7%
7 TeV	19.3%	14.1%	12.8%	5.1%

- A large fraction of min-bias events are diffractive
- True cross sections at LHC energies are not known
- Scaling of cross sections with energy is model dependent
- Kinematics of diffractive events differ between models

Fractions - ALICE

• independent offline trigger combinations (GFO, VOA, VOC, ZDCA, ZDCC) : 2⁵ = 32 combinations

$$N_{trig} = N_{bc} (f^{ND} \varepsilon^{ND}_{trig} + f^{SD} \varepsilon^{SD}_{trig} + f^{DD} \varepsilon^{DD}_{trig} + f^{NI} \varepsilon^{NI}_{trig})$$

• efficiencies (ϵ) from model – sensitive to kinematic differences

- use N_{trig} of each type to minimise χ^2 $\chi^2 = \sum_{\text{trig}} \left(\frac{N_{\text{trig}(i)} - N_{\text{fit}(i)}}{\sigma(N_{\text{trig}(i)})} \right)^2$
- 32 trigger combinations
- 4 unknown fractions (f)
- 1 constraint : $\sum f = 1$
- \Rightarrow 29 degrees of freedom (dof)

Z. Matthews et al. ALICE-INT-2009-027

Fractions - ALICE

PHOJET			
	50:50	FIT	
ND	0.690	0.657 <u>±</u> 0.015	
SD	0.206	0.012 <u>+</u> 0.017	
DD	0.104	0.115 <u>+</u> 0.020	
NI	0	0.0 <u>±</u> 0.030	
χ^2 /dof	-	18.9/29	

Work in progress "data" created with "true" fractions the average of PYTHIA and PHOJET

100,000 events – 900 GeV

Errors propagated through fit.

FIT RESULTS COMPARED WITH USING MC FRACTIONS, AND 1σ CONTOUR

PYTHIA			
	50:50	FIT	
ND	0.690	0.717 <u>+</u> 0.009	
SD	0.206	0.212 <u>+</u> 0.010	
DD	0.104	0.071 <u>+</u> 0.013	
NI	0	0.0 <u>+</u> 0.0220	
χ^2 /dof	-	20.8/29	

Z. Matthews et al. ALICE-INT-2009-027

Fractions – ATLAS ATLAS-CONF-2010-048

Inelastic events:

- events with activity in the MBTS (N_{any})
- atleast one track with $p_T > 500~MeV$ and $|\eta| < 2.5$

Gap events:

- events with activity only in one side of MBTS (N_{ss})
- atleast one track with $p_T > 500~MeV$ and $|\eta| < 2.5$

1,169,508 - data 12-20% diffractive - MC

52,801 - data 85-98% diffractive - MC

A = acceptance (mode dependent)

- PYTHIA agrees better than PHOJET with data.
- Both models ~ 30% diffractive

Diffraction kinematics - ATLAS

d d e e

-|>

ATLAS Preliminary

∖s = 7 TeV

Phojet

Data

→ ND

➡ SD

-O MC Sum

Gap event sample dominated by diffractive events

Distribution steeper than inclusive sample

Diffraction kinematics - ATLAS

Uncorrected for detector and experimental effects

Diffraction kinematics - ATLAS

Observation of diffraction - CMS

Trigger – BPTX and beam scintillator counter

CMS PAS FWD-10-001

• Number of events after cuts: 207345 for 900 GeV and 11848 for 2.36 TeV

Diffractive events identified in three ways:

- 1. The multiplicity in the forward hadron calorimeter (HF).
- 2. The sum of HF tower energy.

Traditional forward gap definition

3. Sum over all calo towers: $\xi \approx \sum_i (E_i \pm p_{z_i})$; related to momentum loss of scattered proton – expect diffractive peak at low values

 ξ : fractional momentum loss of the scattered proton.

$$\xi s = M_X^2$$

Low efficiency for selecting events which: i) escape undetected with very low $\boldsymbol{\xi}$ values;

ii) have almost no charged activity

Observation of diffraction - CMS

SD signature = Large Rapidity Gap

Uncorrected for detector and experimental effects

Observation of diffraction - CMS

900GeV

SD cross section peaking at small values of $\xi s = M_X^2$

 $\xi \approx \sum_{i} (E \pm p_{z_i})$

- Pythia 6 reasonably describes the ND component of data
- Phojet describes diffraction better

2.36TeV

Uncorrected for detector and experimental effects

Enriched SD sample - CMS

Central Exclusive production

- Intact protons can be detected in forward detectors
- Detection of rapidity gap
- Central system: J_z = 0, C-even, P-even state

• J/Psi, H₀

• Strong suppression of background => clean signal => only few events enough to determine Higgs quantum numbers

In CMS: High Precision Spectrometers, HPS In ATLAS: ATLAS Forward Protons, AFP In ALICE: ALICE Diffractive, ADA, ADC

Dijet production with a jet veto- ATLAS

- Atleast 2 good anti k_T jets (R=0.6) with $p_T > 30 \text{ GeV}$ and |y| < 4.5
- Gap events are a subset of events that do not contain an additional jet with $p_T >$ veto scale ($Q_0 = 30 \text{ GeV}$) in the rapidity interval between the dijets
- Gap events fraction studied as a function of mean p_T and rapidity separation of the jets.
- Boundary dijet selection:

Selection A: hardest jets in the event

Selection B: most forward and most backward jets in the event

Dijet production with a jet veto- ATLAS

Reasonable agreement between PYTHIA and data

Fluctuations in high \bar{p}_T bins due to low statistics

Diffractive dijets – CMS

 $p_T(\text{jet1}) > 30 \text{ GeV}; p_T(\text{jet2}) > 20 \text{ GeV}$ Diffractive selection: No energy deposition in HF with E > 4 GeV

Summary

- ALICE, ATLAS and CMS study diffraction.
- SD observed by the presence of a large rapidity gap in one direction.
- Model differences in fractions and kinematics data constrains models:
 - PYTHIA gives a better ND description
 - PHOJET and PYTHIA 8 describe diffraction better
- ALICE results on fractions to be published soon.
- Central Diffraction:
 - Dijet studies in ATLAS show good agreement with PYTHIA
 - CMS results soon
- CEP is useful to look at upgrades for ALICE, ATLAS and CMS

Dank u!

Mercí!

Back up

- ALICE fractions uncertainties
- ATLAS acceptance + kinematics
- ALICE triggered events table
- $\xi \approx \sum (E \pm p_z)$
- CMS control plot HF- plots
- CMS dijet event displays
- Alice diffractive detector
- ATLAS AFP

Z. Matthews et al. ALICE-INT-2009-027

ATLAS - Acceptance

Track acceptance

Generator	ADD 1-trk	ASD 1-trk	AND 1-trk
PYTHIA6	39.2%	37.0%	97.5%
PYTHIA8	50.1%	55.6%	97.3%
PHOJET	52.2%	63.7%	95.9%

MBTS acceptance with atleast one track

Generator	DD		SD		ND	
	ADD any	ADD ss	ASD any	ASD ss	AND any	AND ss
PYTHIA6	97.2%	23.9%	97.7%	20.7%	99.9%	0.7%
PYTHIA8	100%	27.0%	100%	22.9%	100%	0.1%
PHOJET	97.9%	14.2%	97.8%	22.0%	100%	0.5%

ATLAS kinematics - eta

ATLAS kinematics – pt zoomed

ALICE – triggered events table

Sample (# events)	% triggered	% triggered - process types
Phojet (269574)	3.9%	SD=28.8%; DD=6.5%; ND=0.6%; CD=50%
Pythia (240708)	4.9%	SD=30%; DD=9.8%; ND=0.7%

CMS – SD acceptance at 2.36 TeV

Along the lines of a 35y old ISR paper [Phys.Rep.55, No. 1(1979)1-132]

LOOK FOR A SD PEAK @ low $\xi = \Sigma_i (E_i \pm p_{z,i})$

Hadron Forward:

• @11.2m from interaction point • rapidity coverage: $3 < |\eta| < 5$ • Steel absorbers/ quartz fibers (Long +short fibers) • 0.175x0.175 η/ϕ segmentation Sum runs over all the Calo Towers: $p_{z,l} = E_i \cos \vartheta_i$ CONFIRM SD PEAK @ low $E_{HF\pm}$, $N_{HF\pm}$

E_{HFt} = energy deposition in HF±

N_{HF±} = multiplicity of towers above threshold in HF±

P. Bartalini – ICHEP 2010

RG

Meaning of (E ± pz)

- $\Sigma(E \pm p_z)$ runs over all calo towers
- Measure for the momentum of the Pomeron = momentum loss of the proton

Momentum and energy conservation: E(Pomeron) + E(proton 1) = E(X) $p_z(Pomeron) + p_z(proton 1) = p_z(X)$

Recall: in SD events proton loses almost none of its initial momentum.

If proton 1 moves in positive z direction: E(proton 1) - p_z (proton 1) \approx 0 (and proton 2, and Pomeron, move in the negative z direction)

Hence: E(Pomeron) ~ $p_z(Pomeron) \approx 2E(Pomeron) \approx E(X) + p_z(X)$

i.e. $\xi = 2E(Pomeron)/\sqrt{s} \approx (E(X) + p_2(X))/\sqrt{s}$

Result: definition of variables

The selected events are plotted as a function of:

• $E \pm p_z = \sum (E_i \pm p_{z,i})$ - the sum runs over all CaloTowers, where E_i is the tower energy,

 $p_{z,i} = E_i \cos \theta_i,$

 θ_i is the angle between the z axis and the direction defined by the center of the tower and the nominal interaction point.

Diffractive peak expected at low values of this variable, reflecting the peaking of the cross section at small ξ .

- E_{HF} the energy deposition in the HF.
- N_{HF} the multiplicity of the towers above threshold in the HF.

Diffractive peak expected at low tower multiplicity and at low energy deposition, reflecting the presence of a large rapidity gap over HF.

CMS – control plot

CMS – other side 900 GeV

200

100

10²

 \sum E (HF-minus) (GeV)

10

Diffractive dijet candidate at 7 TeV - CMS

Diffractive dijet candidate at 7 TeV - CMS

Outlook – ALICE Diffractive

4 stations of scintillator detectors

ADA $5.5 < \eta < 7.5$ ADC $-5.5 > \eta > -7.5$ Sits in between V0 and ZDC

G. Herrera Corral – Diffraction 2010

ATLAS Froward Proton - AFP

Detector location

ATL-LUM-PROC-2010-003

- what is needed? Good position and good timing measurements
- 220 m: movable beam pipes (in addition vertical roman pots for alignment purposes under study)
- 420 m: movable beam pipe (roman pots impossible because of lack of space available and cold region of LHC)

