# Other Scenarios for a partial Upgrade of the Injector Complex

C. Carli

(Thanks to: G. Arduini, O. Brüning, M. Benedikt, M. Chanel, P. Collier, R. Garoby, M. Giovannozzi, S. Hancock, K. Hübner, A. Lachaize, E. Metral, J. Pasternak, H. Schönauer, E. Shaposhnikova,

D. Tommasini, M. Vretenar, F. Zimmermann ...)

- Introduction
- Requirements and Assumptions
- New PS Injector

 $\circ$  SPL

- $_{\circ}$  General Considerations on Rings
- $_{\circ}$  Rapid Cycling Synchrotron with h\_{RCS} = 1
- $_{\circ}$  Rapid Cycling Synchrotron with "geometric" PS Filling
- o "SuperBooster"

 $\circ \ \textbf{FFAG}$ 

- Impact on Beams
- Summary and Outlook

#### Introduction





Other Scenarios for a partial Upgrade of the Injector Complex

## **Requirements and Assumptions**

- LHC Scenarios should drive considerations on requirements
  - N = 4 10<sup>11</sup> protons per bunch spaced by 25 ns with  $\varepsilon_T^*$  = 2.5 µm at PS injection
    - Twice ultimate intensities allowing for 15% losses and "nominal" emittances
    - □ Maximum "brilliance"  $N/\epsilon_T^* = 1.6 \ 10^{11} \ /\mu m$
    - $\Box~\epsilon_l$  fitting SPS acceptance (0.35 eVs at 26 GeV/c) ... allows increasing  $\epsilon_l$  at PS injection
  - Fits with PS2 assumptions (for comparisons), covers most (but not all!!) LHC scenarios
    - Revise when LHC upgrade scenarios become
- Main limitation: direct transverse space charge effects
  - Maximum "Laslett" tune shift for PS:  $\Delta Q = -0.30$ 
    - PS injection at 2.5 GeV
  - Maximum for PS injector:  $\Delta Q = -0.35$  (or -0.45)
  - Bunching factor B<sub>f</sub> estimate:
    - $\hfill\square$  70% of bucket occupied by beam
    - Reduction with synchronous angle
- Injection above transition not considered
  - Avoids transition crossing (E<sub>kin,inj</sub> > 5.6 GeV)
  - 😕 Cost, how to avoid transition crossing in injector ring



## New PS Injector: SPL



- Extrapolate from present design to required energy
  - Length to reach 2.5 GeV: ~300 m (in addition to Linac4)
- Lorentz Stripping in transfer line
  - Formulas from Handbook of Accelerator Physics and Engineering



## New PS Injector: SPL



- Geometry (just to fix ideas) for 2.5 GeV:
  - Length of SPL ~300m (in addition to Linac4, extrap. from sLHC Proj. Rep. 0015)
  - ~500 m transfer line
- PS Injection
  - New H<sup>-</sup> charge exchange injection to be constructed
  - Flexibility to generate suitable PS bunch structures (SPL chopper, painting?)
  - Close to East Hall ejection
- Simplified PS RF system with ~40MHz possible for LHC protons only (see PS2 scheme)



#### New PS Injector: General Considerations on Rings



- Possible PS harmonic numbers
  - Factor 7 in PS harmonic number required to avoid complex RF gymnastics
  - For new PS injector rings not larger than h<sub>PS</sub> = 21 (spacing ~100 ns): o.k. for 10 MHz PS cavities and ≤40 ns PS injection kicker rise time
- Larger long. emittance at PS injection desirable for fast cycling injector rings:
  - Carger bunching factors with smaller synchronous angle (price: larger RF voltage)
  - Assumed for h=7:  $\varepsilon_{L,par}$  = 2.5 eVs
  - Assumed for h=21: ε<sub>L,par</sub> = 0.9 eVs
- Linac4 extension required to reach injection energy of PS injector





- Many transfers (more than circumference ratio):
  - to reduce RCS intensity (brightness) and injection energy
  - Iong PS filling time or high repetition rate
- In general large synchronous angle and small bunching factor
- Assumptions:
  - Filling of (i) 12 out of 14 PS buckets or (ii) 6 out of 7 PS buckets (for LHC type beams)
  - Acceleration with dB/dt = const. within 50 ms (say 10 Hz repetition, 1.1 or 0.5 s PS filling time) or within 25 ms (say 20 Hz repetition, 0.65 s or 0.25 s PS filling time)
  - R=25 m (as Booster) ... slight increase would not change dramatically
  - $1/\gamma_{tr}^2 = 0$  ( $\eta$  dominated by  $1/\gamma^2$ )
  - Only single harmonic RF considered (no bunch flattening with 2<sup>nd</sup> harmonic RF)

## New PS Injector: RCS with h=1



|                                | h <sub>PS</sub> = 7      |                   |                   |                   |                          | h <sub>PS</sub> =14 |                   |                   |                   |
|--------------------------------|--------------------------|-------------------|-------------------|-------------------|--------------------------|---------------------|-------------------|-------------------|-------------------|
| N in 2.5 µm (1011)             | 4.0                      |                   |                   |                   | 8.5                      | 4.0                 |                   |                   |                   |
| E <sub>kin,ej</sub> (MeV)      | 2500                     |                   |                   |                   | 4000                     | 2500                |                   |                   |                   |
| <b><sub>ej</sub> (T)</b>       | 0.44                     |                   |                   |                   | 0.65                     | 0.44                |                   |                   |                   |
| ε <sub>L,par</sub> (eVs)       | 2.5                      | 2.5               | 1.3               | 2.5               | 2.5                      | 1.25                | 1.25              | 0.65              | 1.25              |
| ΔQ                             | -0.35                    | -0.45             | -0.35             | -0.35             | -0.35                    | -0.35               | -0.45             | -0.35             | -0.35             |
| T <sub>acceleration</sub> (ms) | 50                       | 50                | 50                | 25                | 50                       | 50                  | 50                | 50                | 25                |
| E <sub>kin,inj</sub> (MeV)     | 675                      | 510               | 840               | 755               | 1550                     | 380                 | 270               | 500               | 440               |
| <b><sub>inj</sub></b>          | 0.175                    | 0.147             | 0.201             | 0.188             | 0.308                    | 0.124               | 0.102             | 0.146             | 0.135             |
| Bunch. Fact. @inj              | 0.279                    | 0.289             | 0.219             | 0.246             | 0.216                    | 0.239               | 0.247             | 0.184             | 0.209             |
| V <sub>RF</sub> (kV)           | 52                       | 62                | 31.3              | 77                | 44                       | 47                  | 52                | 32.8              | 76                |
| Sync. phase $\phi_s$           | <b>23.8</b> <sup>0</sup> | 21.8 <sup>0</sup> | 36.8 <sup>0</sup> | 30.7 <sup>0</sup> | <b>37.4</b> <sup>0</sup> | 32.2 <sup>0</sup>   | 30.5 <sup>0</sup> | 44.8 <sup>0</sup> | 39.0 <sup>0</sup> |

- Magnetic field: in general small swing, maximum field for 2.5 GeV seems o.k.
- RF Voltages: typically 50kV to 60kV, less for small emittance more for fast acceleration
- Matching with PS: beam arrives with small bunch length (even for h<sub>PS</sub>=14 !!) ... probably sufficient to reduce RF voltage arriving at the flat-top
- Acceleration with large phase  $\phi_s$  and small bunching factors?



- RCS with harmonic number larger than h=1:
  - Number of transfers given by circumference ratio
    - No increase of brightness in receiving machine a short spacing between bunches
  - Large harmonics allow increasing the bunching factor (large RF voltage as well)
- Assumptions
  - 2/7 times the PS size => R = (200/7) m = 28.57 m (slightly larger than PSB)
  - Filling of (i) 18 out of 21 PS buckets or (ii) 6 out of 7 PS buckets (for LHC type beams)
  - Acceleration with dB/dt = const. within 50 ms (say 10 Hz repetition, 0.2 s PS filling time) or within 100 ms (say 5 Hz repetition, 0.4 s PS filling time)
  - $1/\gamma_{tr}^2 = 0$  ( $\eta$  dominated by  $1/\gamma^2$ )
  - Only single harmonic RF considered (no bunch flattening with 2<sup>nd</sup> harmonic RF)

irli 9

#### New PS Injector: RCS with "geometric filling"



|                                 | h <sub>RCS</sub> = 2 & h <sub>PS</sub> = 7 |                   |                   |                         |                   | h <sub>RCS</sub> = 6 & h <sub>PS</sub> =21 |                  |                   |                  |
|---------------------------------|--------------------------------------------|-------------------|-------------------|-------------------------|-------------------|--------------------------------------------|------------------|-------------------|------------------|
| N in 2.5 μm (10 <sup>11</sup> ) | 4.0                                        |                   |                   |                         | 8.5               | 4.0                                        |                  |                   |                  |
| E <sub>kin,ej</sub> (MeV)       | 2500                                       |                   |                   |                         | 4000              | 2500                                       |                  |                   |                  |
| <b><sub>ej</sub> (T)</b>        | 0.39                                       |                   |                   |                         | 0.57              | 0.39                                       |                  |                   |                  |
| ε <sub>L,par</sub> (eVs)        | 2.5                                        | 2.5               | 1.3               | 2.5                     | 2.5               | 0.9                                        | 0.9              | 0.45              | 0.9              |
| ΔQ                              | -0.35                                      | -0.45             | -0.35             | -0.35                   | -0.35             | -0.35                                      | -0.45            | -0.35             | -0.35            |
| T <sub>acceleration</sub> (ms)  | 50                                         | 50                | 50                | 100                     | 50                | 50                                         | 50               | 50                | 100              |
| E <sub>kin,inj</sub> (MeV)      | 1070                                       | 840               | 1250              | 990                     | 2190              | 950                                        | 750              | 1080              | 910              |
| <b><sub>inj</sub></b>           | 0.207                                      | 0.177             | 0.231             | 0.197                   | 0.348             | 0.191                                      | 0.164            | 0.209             | 0.186            |
| Bunch. Fact. @inj               | 0.333                                      | 0.340             | 0.273             | 0.361                   | 0.269             | 0.380                                      | 0.385            | 0.327             | 0.398            |
| V <sub>RF</sub> (kV)            | 79                                         | 102               | 37.6              | 64                      | 51                | 196                                        | 259              | 72                | 175              |
| Sync. phase $\phi_s$            | 13.5 <sup>0</sup>                          | 12.1 <sup>0</sup> | 24.9 <sup>0</sup> | <b>8.7</b> <sup>0</sup> | 25.9 <sup>0</sup> | 5.8 <sup>0</sup>                           | 5.0 <sup>0</sup> | 14.5 <sup>0</sup> | 3.3 <sup>0</sup> |

- High injection energies !!
- Small magnetic field swing, maximum field for 2.5 GeV o.k.
- RF Voltages: typically 60kV to 100kV for h<sub>RCS</sub>=2, less for small emittance more for fast acceleration, higher for h<sub>RCS</sub>=6.
- Matching with PS: make sure that bunches are long enough
- Synchronous phase  $\phi_s$  reduced in particular for  $h_{RCS}=6$  ... improves bunching factor !!

Other Scenarios for a partial Upgrade of the Injector Complex

10 /16



3 SPSB rings with 1/3 the PS size and  $h_{SPSB}$ =7 an option?

- Natural approach for LHC (similar to RCS with "geometric fillig"):
  - 2/7 times the PS size => R = (200/7) m = 28.57 m (slightly larger than PSB)
  - Three rings with h<sub>SB</sub> = 2 to fill of 6 out of 7 PS buckets (no advantage with larger harmonics)
  - Second harmonics RF system ("small" RF voltages) and bunching factor B<sub>f</sub> = 0.55
- Results
  - ΔQ = -0.35: E<sub>kin,inj</sub> = 680 MeV
  - ΔQ = -0.45: E<sub>kin,inj</sub> = 530 MeV

## New PS Injector: FFAG

- Study of RCS options:
  - Small swing of magnetic field even for h<sub>RCS</sub> = 1
  - "High" repetition desirable for large h<sub>PS</sub>
- FFAG options:
  - Scaling FFAG (principle of first FFAGs studied ~50 years ago):
    - □ Large aperture with "small index" ... spiral shape helps a bit, or
    - Large circumference with strong focusing by combination positive & negative bends
  - Linear non-scaling FFAG:
    - □ No non-linear fields, but the working points moves (over integer resonances !!)
  - "Tune-stabilized" or "zero chromaticity" (non-linear non-scaling) FFAG
    - □ Shape magnetic fields to fix working point ....
    - Some non-linear fields
  - Presently a very active field with "novel" approaches
- Cost effectiveness: long circumference, large apertures, high RF gradient
  - Superconducting magnets (no ramping) to make the FFAG aperture smaller?
- Scaling from proposals (next 2 slides) .... to get a first idea
  - Detailed study required: size, injection energy, apertures, RF voltages ... .
  - Direct space charge limitations:  $\Delta Q$ =-0.3 feasible at least for non-linear non-scaling FFAG?

At a first glance: - FFAG may be an attractive option

- but no gain from very large

acceptances (for LHC)



C. Carli



### New PS Injector: FFAG **Extrapolation for scaling FFAG from RACCAM proposal**

Scaling FFAG for medical applications (1.7 T peak field, 6 kV RF, acceleration in ~10 ms)

Final parameters of the RACCAM 10 cell ring and magnet :

Slide from FFAG08: http://www.cockcroft.ac.uk/events/FFAG08/presentations/Meot/statusRACCAM-Meot.pdf



#### New PS Injector: FFAG Scaling FFAG from RACCAM proposal

![](_page_13_Picture_1.jpeg)

Non-scaling non-linear FFAG as proton driver ... still some working point variations during acceleration

Preliminary design parameters (alternative 1) Slide from FFAG08: http://www.cockcroft.ac.uk/events/FFAG08/presentations/Pasternak/FFAG08JP.ppt

![](_page_13_Figure_5.jpeg)

### Impact of a new PS Injector on Beams

- Rapid cycling rings: PS Injection plateau required for accumulation
  - Increased PS cycle length reduces proton flux ?
- LHC proton beams:
  - Increased beam brightness available at PS ejection (probably o.k. for PS with transition crossing ...., not highest intensities for PS)
  - SPS upgrades required (e-cloud)
- Ions:
  - No impact (LEIR remains as ion injector), except
  - In case of SPL as PS injector: option for RF renovation with "tunable 40 MHz" system (see PS2 proposal), scheme for ions to be worked out (based on ideas for PS2)
- High Intensity (CNGS like):
  - Changes of details of RF manipulations in some cases (h<sub>PS</sub>=7, splitting to h<sub>PS</sub>=14 for RCS with "geometric filling" and Super-Booster)
  - No significant impact on performance compared to Linac4 alone limitations at transition crossing ... will accumulation plateau with rapid cycling rings change the picture
- ISOLDE:
  - Potential to improve performance with all options (acceptances, repetition rates ...),
  - FFAG option: fixed ejection energy a problem

## **Summary and Outlook**

![](_page_15_Picture_1.jpeg)

- Investigations on new PS injectors for higher brightness LHC proton beams
  - SPL type and several injector rings investigated
  - Basic parameters (size, injection energy .....) estimated to obtain brightness expected with PS2 design
  - More studies required to compare different options
- Impact on beams:
  - Significant increase of brilliance of LHC proton beams ... require SPS upgrades
  - Potential for continuation of all present PS complex physics programs
- Outlook:
  - Scenario for construction: new tunnels or re-use PSB tunnel?
    - New tunnels since 2-3 years stop inacceptable ... preparations in parallel until connection
  - Possible further in-depth studies:
    - More detailed investigations (acceptances ...) and cost estimates for comparison of different options
    - □ Feasibility of FFAG
    - □ Other limitations than direct space charge ... during accumulation in PS
    - Detailed analysis of impact on operations and beams (longer PS injection plateau, gain for ISOLDE ...) other than LHC