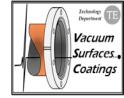


Session 3 – Optimise Interventions and Recovery from Collateral Damage on Cold Sectors



What <u>repair activity</u> can be done today on a <u>locally</u> <u>warmed-up sub-sector</u>?

Paul Cruikshank on behalf of TE/VSC

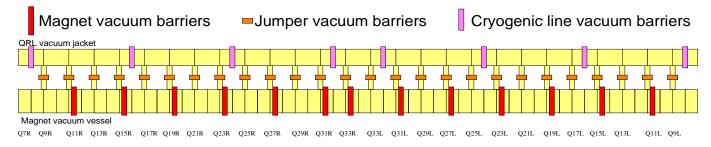
What repair activities on a locally warmed-up subsector

What is a local warm-up?

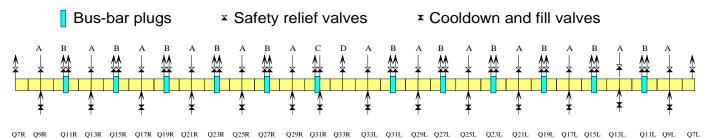
What repairs can be done ?

Is there a time gain?

What are the problems and risks?



..local warm-up was always foreseen



LHC ARC: CRYOGENIC AND INSULATION VACUUM BASELINE DESIGN

Insulation Vacuum sectorization:

Cold-mass sectorization:

2.8 km magnet cryostat has 13 vacuum barriers

Warm helium, fed via the QRL, is used to locally warm the cryomagnets

• Repairs at interconnects on cold mass volume (diode, busbar, splice, helium leak, IFS, line N) or instrumentation.

But.. not foreseen on: a) beam vacuum (see later) Or b) circuits without valves line c',k,e,x,y (Serge talk)

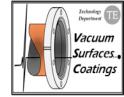
214 m 214 m

n-2	n-1	n	n+1	n+2	

- Scenario from LHC Project Report 60, Sept 2000
 - n-2.... floating, cold, under vacuum
 - n-1 thermal buffer, RT, under vacuum
 - n intervention, RT, vented, W opened 🍃 642m (23%) at RT
 - n+1 thermal buffer, RT, under vacuum J
 - n+2.... floating, cold, under vacuum

Local Warm-up experience

4-5 July 07, DFBA flex leak during CD


n-2	n-1	n	
160K	293K	293K	

4-5 Aug 07, DFBA flex leak during CD

Baseline 'local warm-up' in insulation vacuum

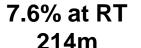
Scenario from LHC Project Report 60, Sept 2000

- n-2.... floating, cold, under vacuum
- n-1 thermal buffer, RT, under vacuum
- n intervention, RT, vented, W opened
- n+1 thermal buffer, RT, under vacuum
- n+2.... floating, cold, under vacuum

642m (23%) at RT

Impact of possible PIM failures:

- PIMs may fail in any of the 3 RT vacuum subsectors
- 2.8 km beam vacuum must be vented to exchange 1 PIM
- PIMs in thermal buffers cannot be accessed
- \Rightarrow Whole arc must be re-warmed, and damaged PIMs repaired



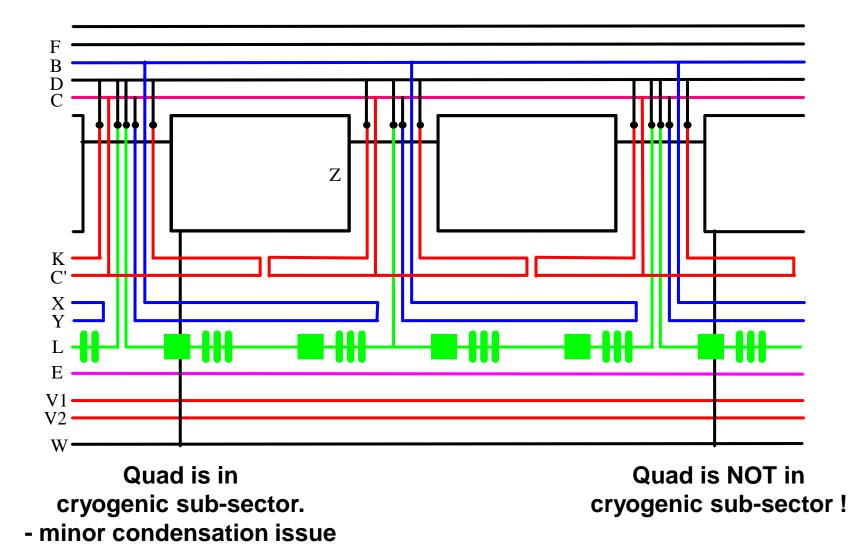
Revisit 'local warm-up' scenario PIM WG & MARIC meeting June 2008

• Goals:

- Allow local interventions diode, busbar, leak, etc
- Minimise number of PIMs which undergo thermal cycle to RT
- Ensure <u>access</u> to PIMs which undergo thermal cycle to RT
- Expect shorter intervention time w.r.t. a sector warm-up ?

Issues:

- No thermal buffers cold interfaces at sub-sector extremity ?
- Can a failed PIM be changed with arc still cold venting & backstreaming ?

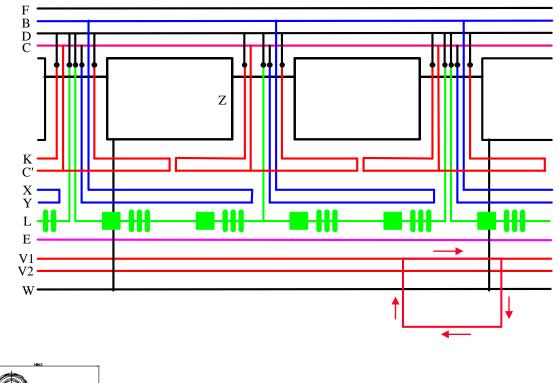


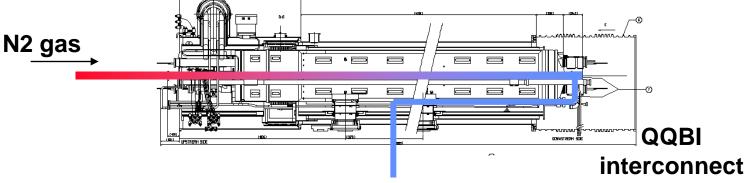
Revisit 'local warm-up' - cold interface issue

Technology Department

Vacuum Surfaces..

Coatings




Revisit 'local warm-up' - cold SSS on the right

Force warming of SSS with recirculation of N2 in beam vacuum

- Warm-up whole arc to ~ 100 K
- Warm-up the vacuum subsector to RT
- Warmup SSS at vacuum barrier using N2 flow through SSS pumping pipes of the adjacent half-cell

Session 3 - What repair activity can be done today on a locally warmed-up sub-sector Paul Cruikshank TE/VSC

Revisit 'local warm-up' non-accessible PIM

PIM WG inputs - calculations by Delio Ramos...

Interconnect	Temperature during repair (CM1/CM2/ BS1)	Intervention offset	Cold offset (mm)	PIM type	Span @ inst alla tio n	Span @	dS (mm) c 0 1 d
BB	100/100/100K	37.1	40.0	BB	39.0	79.0	-2.9
BQ	100/100/100K	21.2	22.1	BQ	55.0	77.1	-0.8
QB	100/100/100K	31.1	34.5	QB	48.0	82.5	-3.4
BQ@SSS1	100/290/100K	15.9	22.1	BQ	55.0	77.1	-6.2
QB@SSS2	290/100/290K	21.5	34.5	QB	48.0	82.5	-13.0
QB@SSS2	100/100/290K	17.5	34.5	QB	48.0	82.5	-16.9

dS: Displacement from cold temperature position to intervention temperature. Negative sign indicates compression.

Cold offset: PIM extension from room temperature to cold working temperature.

Intervention offset: offset calculated as the displacement from room temperature to magnet temperature during the intervention.

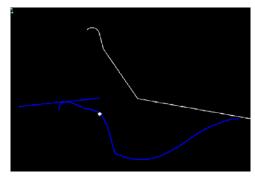
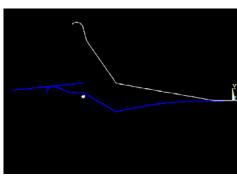
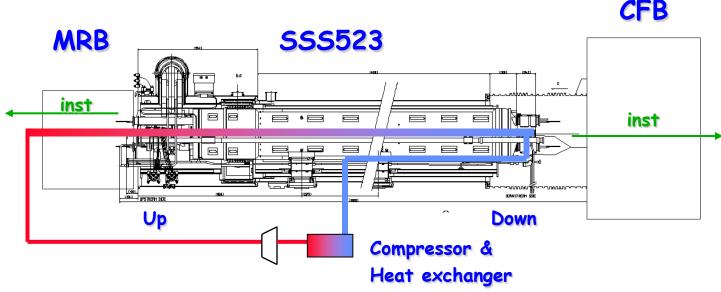


Figure 1-Deformed shape of the finger at the intervention temperature equivalent to 16 mm warm-up stroke.




Figure 2-Finger shape after a warm-up/colldown stroke of 16 mm. The contact at the Rh is lost.

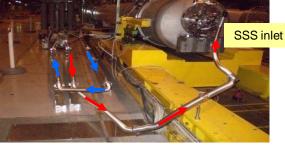
- ⇒ If PIM of QQBI interconnect at warmed SSS is in failure mode, then 16.9 mm compression could reduce machine aperture.
- \Rightarrow Must be checked by endoscope or x-ray.

\Rightarrow Future consolidation priority: QQBI PIM at vacuum barrier?

• 2 Full scale tests on SSS in SM18 (July & Nov '08 Bethold Jenninger)

Vacuum

Coatinas

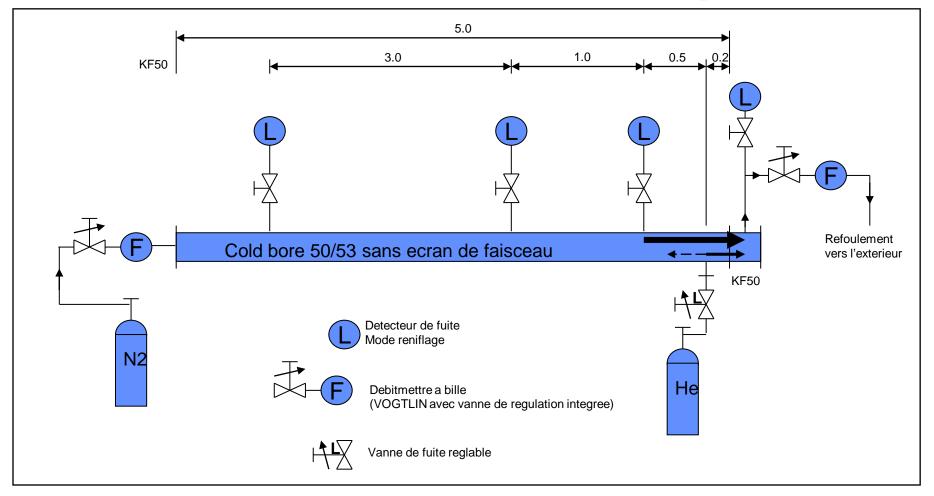

Measurements of warm-up time, cold mass position wrt cryostat, displacements at cold bore welds. Collaboration with MEI, MCS, VAC, TS

Results:

Max heat transfer N2 gas to cold mass ~ 2.5kW


6 days for 80K to 290K

Risk for beam vacuum contamination/loss of conditioning



Revisit 'local warm-up' PIM exchange - backstreaming in cold B.Vac

- Goal: Avoid H2O diffusion into cold beam vacuum
- Calculations (Vandoni) & experiment (Jenninger) to determine minimum flow necessary to limit retro-diffusion using helium against N2 outflow
- Flow of 5mm/s outflow is sufficient to avoid backstreaming > 0.5 m

Session 3 - What repair activity can be done today on a locally warmed-up sub-sector Paul Cruikshank TE/VSC

More Local Warm-up Experience

n	n+1	n+2
293K	293K	160K
n-2	n-1	n
160K	293K	293K

4-5 July 07, DFBA flex leak during CD PIM problem not known

4-5 Aug 07, DFBA flex leak during CD PIM problem not known

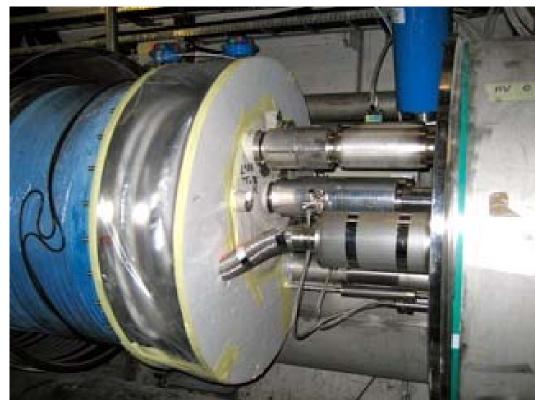
(n-1		n	n+1	
	250K	293K	250K	

6-7 Aug 09, MB lyre short during CD PIM extension not critical at 250k

n-2	n-1	n	
50K	50K	293K	
n-2	n-1	n	
50K	50K	293K	

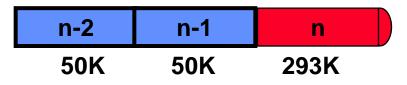
2-3 July 09, DFBA flex leak during PIM CD b.vac neon venting + PIM endoscopic inspection anticondensation barrier

8-1 Aug 09, DFBA flex leak during PIM CD b.vac neon venting + PIM endoscopic inspection anticondensation barrier



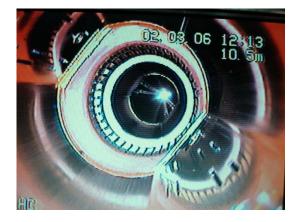
Anticondensation barrier

n-2	n-1	n	
50K	50K	293K	


Dry air feed from distribution line

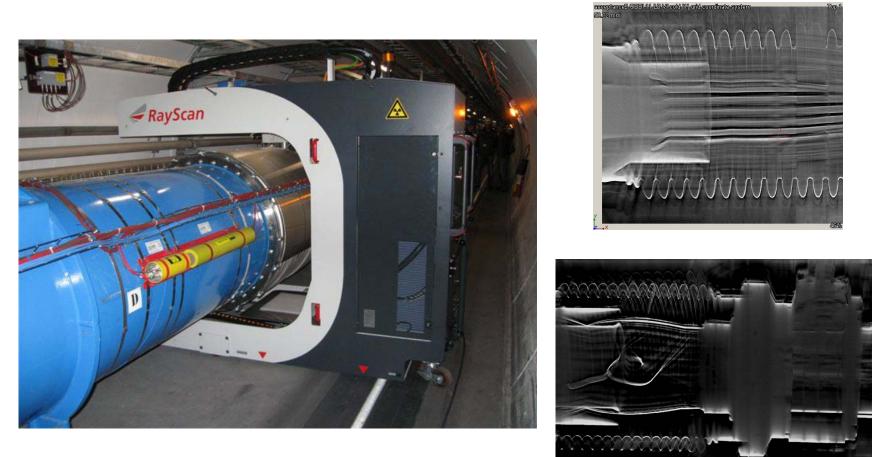
PIM inspections in 2-3 and 8-1 – new territory again

Beam vacuum neon venting

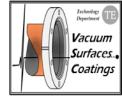

- Complex operation of 2x2.8km
- NEG purification
- Experience from expt chambers
- Avoid back-diffusion (+2 mbar)

PIM verification

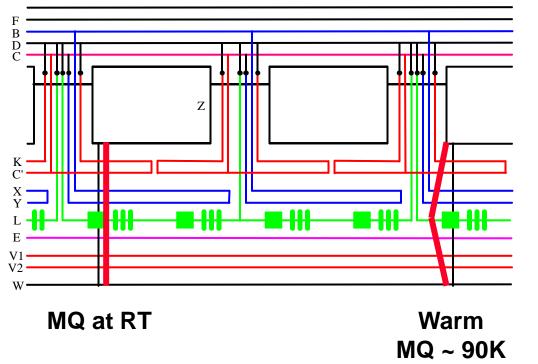
- Cut 1 PIM per beamline
- Check 30 PIMs with 100m endoscope
- Re-weld PIM without overpressure


Interventions were good success... but complex, and not without risk !!

The tomograph is here....



B.vac venting + endoscopy not required to check PIMs venting only if damaged PIM



Revisit 2 'local warm-up'

avoid beam vacuum venting

Warm 1 cell to 90K - no liquifaction of O2 or N2

Cryostat is vented to dry air then anti-condensation pockets

Air blowers or heaters maintain SSS cryostat surface above air dew point

SSS cold mass temp < 293K so QQBI PIM is less critical

Calcs & tests to do ..?

WU/CD times

inputs from Laurent & Serge

				2008	2010	
		Γ	Design	Present	Reachable *	
		Emptying	1	3	2	
	Complete sector WU		12	17	14	
		Total	13	20	16	
۸		CD 300-5 K	13	25	18	full
Α	Complete sector CD	Filling	1.5	3	2	
		CD 5-1.9 K	0.5	2	1.5	37.5 days
		Total	15	30	21.5	-
	Total A		28	50	37.5	
		Complete emptiyng	1		2	
	3 sub-sector WU	3 s/s WU 5-300 K	5	1	10 to 11	
		Total	6	<u> </u>	12 to 13	
		3 s/s CD 300-80 K	4		8	3 sub-s
В		Complete CD 80-5 K	4]	5	
	3 sub-sector CD	Filling	1.5]	2	29.5 days
		CD 5-1.9 K	0.5]	1.5	E C
		Total	10	<u>] </u>	16.5	
	Total B		16		28.5 to 29.5	
		Complete emptying	1		2	
		Complete WU 5-100 K	3	1	6	
	1 sub-sector WU	1 s/s WU 100-300 K	4		8 or 9	
		SSS WU	?		?	
		Total	8+?	<u>] </u>	16 to 17 + ?	1 sub-s
С		1 s/s + 1 SSS CD 300-100 K	3.5		7	
		Complete CD 100-5 K	4.5		6	31.5 days
	1 sub-sector CD	Filling	1.5		2	-
		CD 5-1.9 K	0.5]	1.5	
		Total	10	<u> </u>	16.5	
	Total C		18 + ?		32.5 to 33.5 + ?	

* : with present resources and hardware

.. including ELQA, powering, etc

scenario = repair helium leak in 3-4

	Masked activities	Full WU (days)	Local WU 214m (days)
Warm-up	Consignation(1&2) PIM Tomography	16	16
Repairs		4 (min.)	4 (min.)
Repumping // ELQA	Purge	5	5
ELQA (%MIC, TP4)		5 + 2	2
Cool-down	ELQA (DOC-C)	21.5	16.5
ELQA - 1.9K MIC-C , TP4E		7.5	3.5
Deconsignation (1&2)		1	0.5
Powering Tests		7	5
TOTAL		<u>69</u>	<u>52.5</u>

Time gain of > 2 weeks and < 10% of arc is thermally cycled Time gain assumes no secondary problems in thermally cycled zone

In summary

 Local warm-up is part of baseline, allows local repairs, avoids thermal cycle of whole arc, method must be adapted for PIM issue.

Validations & experience:

- ♦ 5 local warm-ups in LHC tunnel
- N2 warm-up of SSS in SM18
- Retrodiffusion tests in lab and exploited in 2-3 and 8-1
- Neon venting and PIM exchange during local warm-up in 2-3 and 8-1
- Anticondensation barrier and ins vac repumping 2-3 and 8-1
- Endoscopic PIM inspection 8-1 and 2-3
- Tomography tests in sector 7-8 avoid systematic b.vac venting
- To do calcs/test on vented 90K SSS

Potential gain of > 2 weeks wrt full warm-up

Risks:

- If accessible PIM collapses in RT zone venting etc more time
- If non-accessible PIM collapses at SSS warmup another 214m

Acknowledgements

- PIM Working Group
- VSC & CRG colleagues
- Many other groups MCS, EN during interventions
- Inputs from EN/MEF, ELQA and HC teams
- All others I forgot...

Thanks for your attention