

Technology Department Session 2 – Magnets and splices consolidation shutdown 2010/11

Status of splices in 6 kA circuits / [Progress report

- Inventory of 6 kA splices
- Currents expected in function of energy level
- Example of Q7L2
- Measurement of splice electrical resistance at cold (SC)
- QPS characteristics for IPQs/IPDs
- Praying hand splices
 - •Design
 - Production method
 - Tests performed
 - •MCI
 - •Proposed actions for the future
- Further work
- Conclusions

CERNI CONTRACTOR		
		- Por Car
Turkey In	ventory of 6 kA circuits (1/2)	
Technology Department		TOTAL : 94 circuits
		78 IPQs + 16 IPDs
Individually Powered Qua	drupoles and Dipoles (IPQ/I	PD):
 In the continuous cry 		
•DS : Q8, Q9, Q1	10 @ P1,2,4,5,6,8 Left & Rig	ght: # 36
•MS : Q7 @ P1,2	2,4,5,8 (Not P6) Left & Right	: # 10
 In Stand-Alone cryos 	stats:	
•Q6 @ P1,2,4,5,8	8 (Not P6) Left & Right:	# 10
•Q5 @ P1,2,5,6,8	8 Left & Right:	# 10
•Q4 @ P6 Left &	Right:	# 2
 In Semi Stand-Alone 	•	
•Q5 @ P4 Left &	-	# 2
•Q4 @ P1,2,5,8 I	6	# 8
•D4 @ P4 Left &	-	# 2
•D3 @ P4 Left &	Right:	# 2
•D2 @ P1,2,5,8 l	0	# 8
•In triplets	5	
•	ft & Right: (In Nuria's talk)	# 4
OFth of Japuany 2010	LHC Performance Workshop	2/38
25th of January 2010	······································	J.Ph. Tock

Technology Department

Sector	#
1-2	17
2-3	9
3-4	8
4-5	16
5-6	13
6-7	5
7-8	9
8-1	17
TOTAL	94

Inventory of 6 kA circuits (2/2)

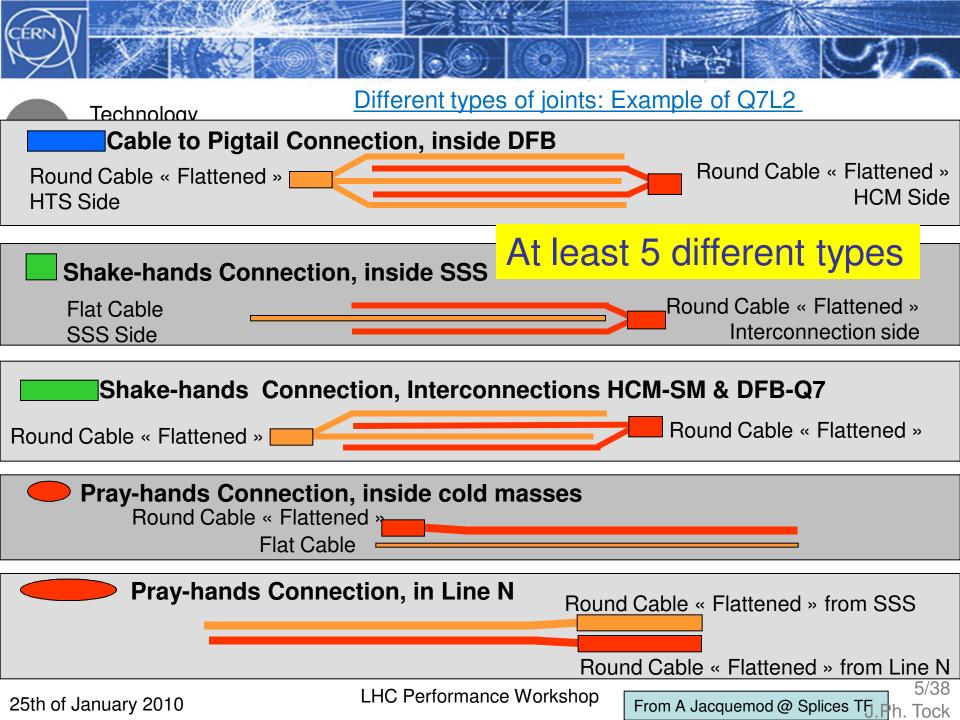
Powered by	#	
DFBA	49	Q7 to Q10 + some Q6
DFBM	25	D3, D4 + some D2, Q4, Q5, Q6
DFBL	16	D2, Q4,5,6 @ P1 & P5
DFBX	4	D1 @ P2 & P8

TOTAL : 94 circuits

- * 5 to 17 per sector (12 in average)
- * 4 different powering units

Many different types & specificities

LHC Performance Workshop



1	7	1		Ż		~			-		X	110	IJ	*	91		2	91		e	9	15	3	K.	5/		ŧć.	Ξ,		1.	(ic	-	3		1	\sim	\sim	4	12		Y.	
	Technology Currents in "6kA" circuits																																									
Sector			12	ec			J	y 23			Т			34					45			56							67			70					01					
Energy	3.5	5	7	7.6	I (H)	35	5	7	7.	6 L [ł	11 3	.5	5	7	76	L (H)	3.5	5	7	7.6	L (H)	3.5	5	7	76	L [H]	3.5	5	7	7.6	L (H)	3.5	5	7	7.6	П	3.5	5	7	7.6	L (H)	
D1 R	0.0	•	1	1.9	- [1]	3000	4500	5800	_		-		5	'	1.9	- [1]	0.0	0	'	1.0	- [rij	0.0	J		1.0	- [r]	0.0	J		1.9	- [1]	0.0	v	1	1.0		3000	4500	5800			
	2300	3500	6000	6500	0.052			_	_	0.0		+										2300	3500	6000	6500	0.052													6000			
D3 R										-	+	+					2400	1000	5500	000	0.050																					
D4 R	- (94	Ci	rc	uit	s:																																				
Q4 R	1 _	С	ur	re	nt	a	: 3	.5	Ę	5.	7.	7	.6	Te	eV	' e	qu	iva	ale	ent		1900	2800	3610	3900	0.074	1900	2800	3610	3900	0.074						1900	2800	3610	3900	0.148	
Q5 R	<u>0</u> ,									nc		Ĩ			-	Ŭ	-1					2300	3500	4310	4650	0.021	1900	2800	3610	3900	0.074						1900	2800	3610	3900	0.148	
Q6 R	2								a			_										2300	3500	4310													2300	3500				
Q7 R	3100		5390				_	5390	-	20 0.0	_							4000				2800															2800	4000		5820	0.03	
Q8 R	3100	4000				2800	_		582	20 0.02	21						2800	4000	5390	5820	0.021	2800	4000	5390	5820	0.021	2800	4000	5390	5820	0.021						2800	4000	5390	5820	0.021	
Q9 R	3100					2800		_	5		1) 						2000		ſΔ	1	2	.5	T		V	ľ		F c	e V	N.V	7	T	-1	/	7	6			V	820	0.026	
Q10 R	3100	4000	1 = 1 = (0.021	2800	4000	5390	5	(U. U. U.									<u>L., </u>		2	-12		Y			1													- • ()	0.021	
			5390						+	Q	7		Q	8.		DG),	Q	1()			3	1($\mathcal{O}(\mathcal{O})$		2	10	00)		53	39	0			5	82	20	F	0.021	
-		4000 4000		5820				-	+														<u> </u>	4 1								<u> </u>		6							0.026	
		4000		5820	0.021	-		-	+	Q	4		Q	5,	014 6010	Jt						(000)	2	-1 ()(ر	55	00)		43	51	U		9.023 - n.02	4	65) U	1020	0.021	
			4310					-	+	n	1			2		12	2300	ר/	T an		1004		Q	20)(16	00	n		60		Ω	1440	0.016	6	50		650	0.03	
			3610							μ	ļ,			۷,	0000	<i>J</i> J	9		1 0.00		Nor	inne			3000	0.074		FU						U	1000	0.00					0.021	
			3610													0.014	1900	2800	3610	3900	0.074	1900	2800	١.	~ (\mathbf{D}	10					1900	2800	3610	3900	0.148	1900	2800	3610			
D4 L											31	100 4	1020	5520	6000	0.052										20	10															
Re	efe	rer	nce	es																	-																			$ \neg \uparrow$		
- L					-	as	е														2											3100	4600	6000	6500	0.052	2300	3500	6000	6500	0.052	
								tio	c /		7	19	·)•																			3000	4500	5800	6100	0.026						
	-Powering specificities (EDMS): 1-2 1009658, 2-3 883231, 3-4 883247, 4-5 883273																																									
	1-2 1009658, 2-3 883231, 3-4 883247, 4-5 883273 5-6 883295, 6-7 883317, 7-8 883182, 8-1 883200 ce Workshop 4/38																																									
		5-0	50	001	230	J, C)-1 	00		717	, /	-0	00	50	102	-, 0	, 1	00		0	(ce \	/0//	rĸs	sno	р														Too	_	

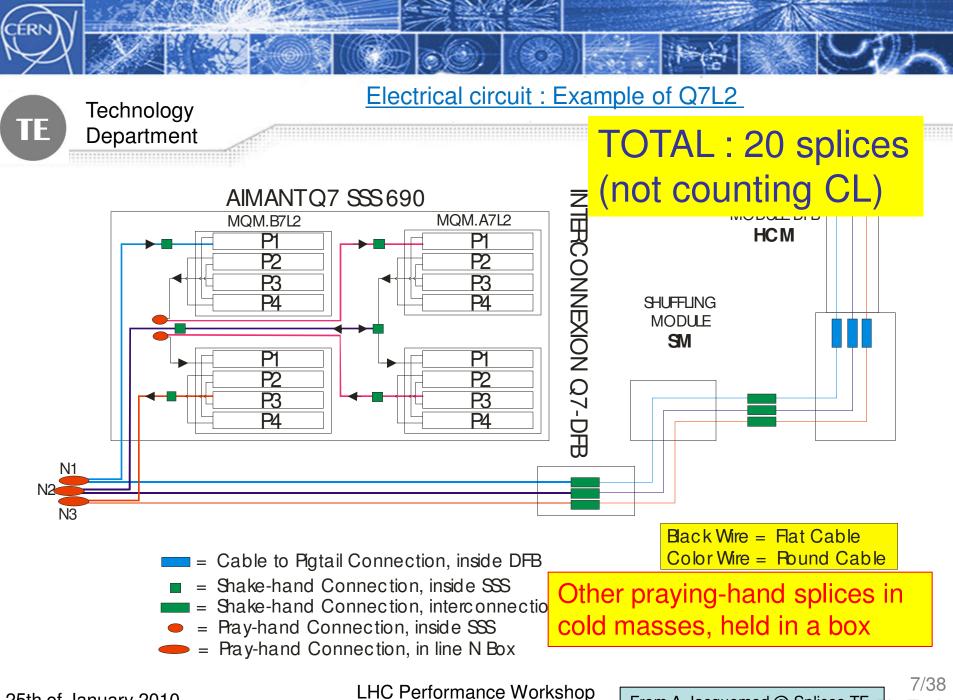
1000

Two types of cables: Rutherford flat type inside magnets

At least 2 different cables

Circular type in the powering lines and DFB's

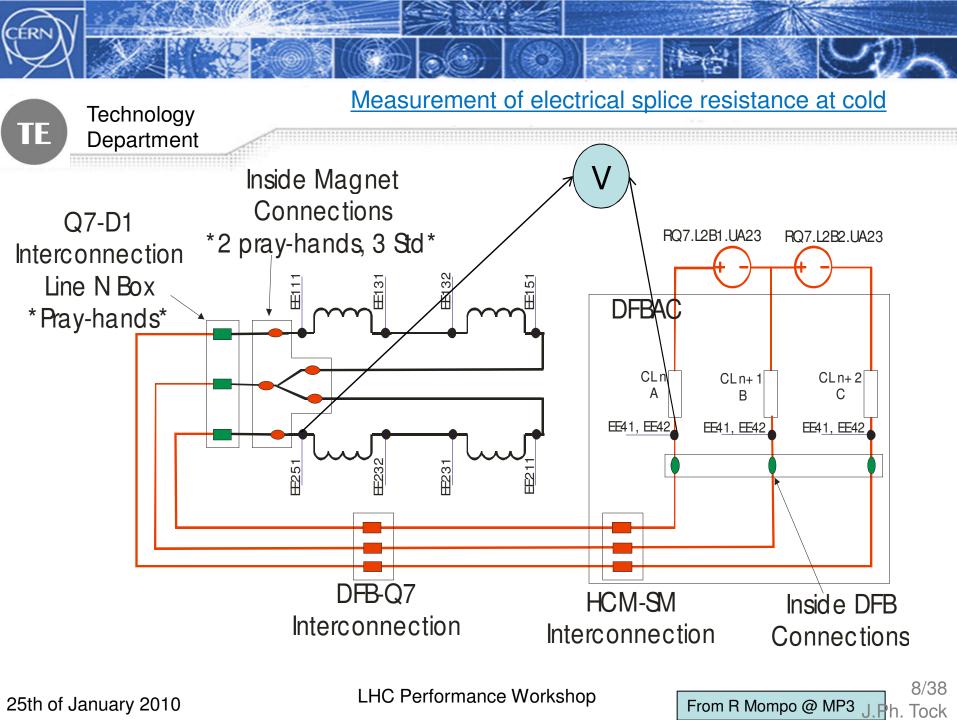
Many different configurations ; inventory to be continued


25th of January 2010

LHC Performance Workshop

From A Jacquemod @ Splices TF

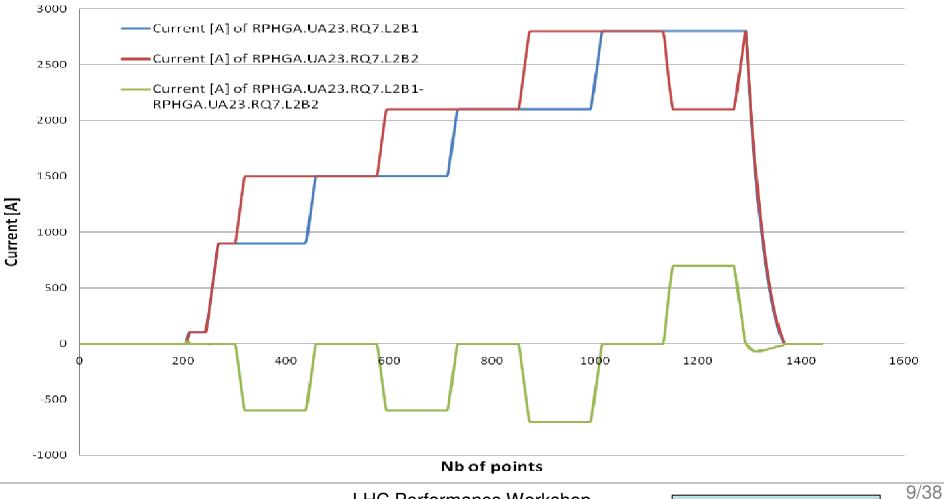
6/38


Tock

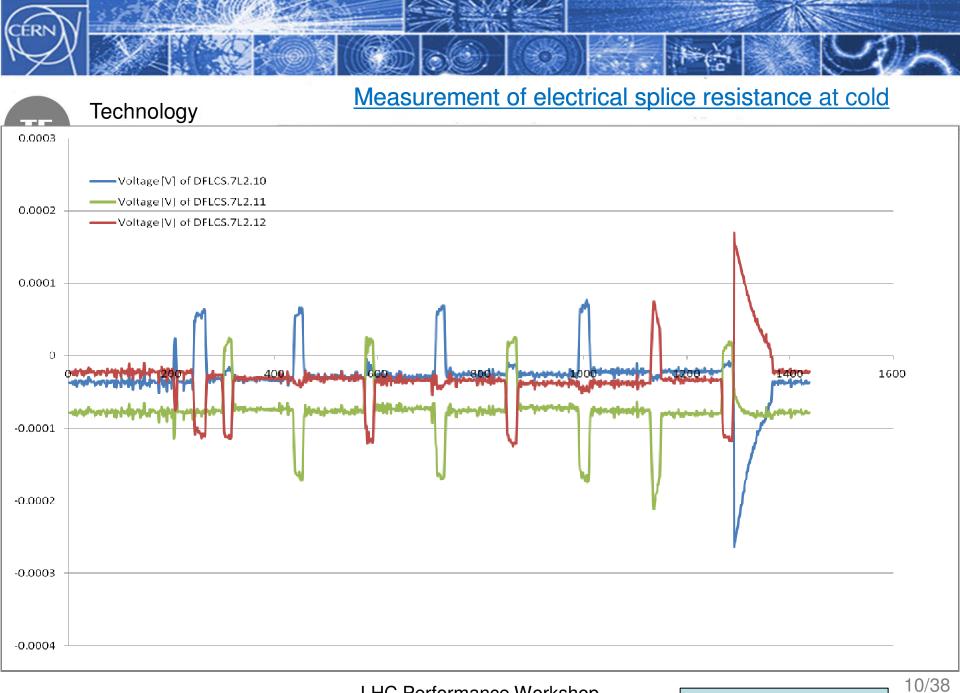
25th of January 2010

From A Jacquemod @ Splices TF

Tock

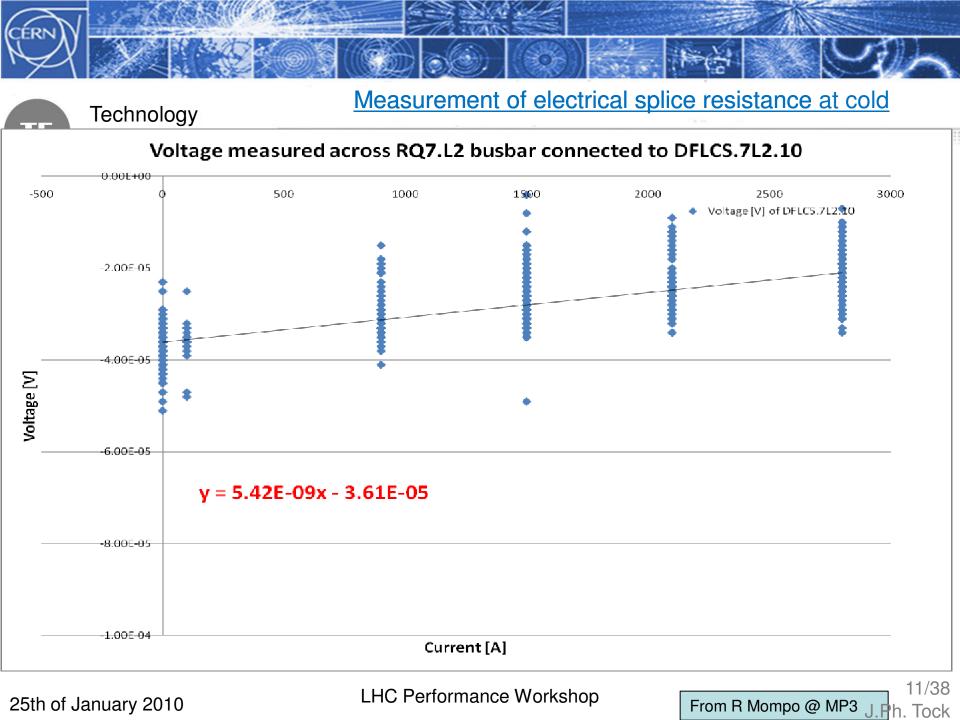

LHC Performance Workshop

Measurement of electrical splice resistance at cold


Current cycles performed on RQ7.L2

25th of January 2010

LHC Performance Workshop


From R Mompo @ MP3 J.Ph. Tock

25th of January 2010

LHC Performance Workshop

From R Mompo @ MP3 J.Ph. Tock

TE

Technology Department

Measurement of electrical splice resistance at cold

Magnet	Bus-bar of lead	Resistance [?]	Uncertainty (1σ) [?]	Offset [V]
Q10	DFLCS.7L2.1	5.3E-09	1.E-09	-6.1E-05
Q10	DFLCS.7L2.2	5.4E-09	3.E-09	1.3E-05
Q10	DFLCS.7L2.3	5.3E-09	1.E-09	2.4E-05
Q9	DFLCS.7L2.4	5.7E-09	1.E-09	9.4E-06
Q9	DFLCS.7L2.5	5.9E-09	2.E-09	1.0E-05
Q9	DFLCS.7L2.6	6.1E-09	1.E-09	1.8E-05
Q8	DFLCS.7L2.7	5.3E-09	7.E-10	2.9E-05
Q8	DFLCS.7L2.8	6.1E-09	2.E-09	1.7E-05
Q8	DFLCS.7L2.9	5.4E-09	7.E-10	5.6E-06
Q7	DFLCS.7L2.10	5.4E-09	1.E-10	-3.6E-05
Q7	DFLCS.7L2.11	5.7E-09	3.E-10	-7.7E-05
Q7	DFLCS.7L2.12	5.3E-09	1.E-10	-2.4E-05

4 SSS tested (12 segments with 5 splices per segment):

- Max is 6.1 nOhm
- Average splice resistance is 1.1 nOhm
- Expected: 1 nOhm / Specified < 1.5 nOhm

25th of January 2010

LHC Performance Workshop

From R Mompo @ MP3 J.Rh. Tock

Sequence of events :

•Method was not available at the beginning of the commissioning

•Proposal / Recommendation to commission the circuits to reduced currents to 3.5 TeV level (MP3 on 30/09/2009 & TEMB on 05/10/2009), so not requiring splice mapping

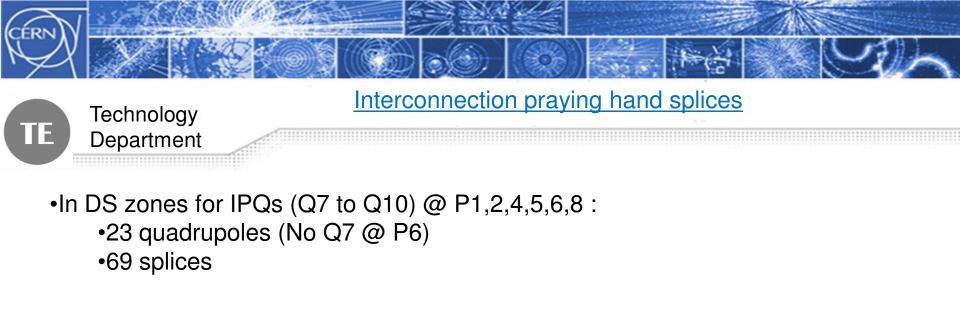
•In parallel, the system and the method have been developed by TE-MPE

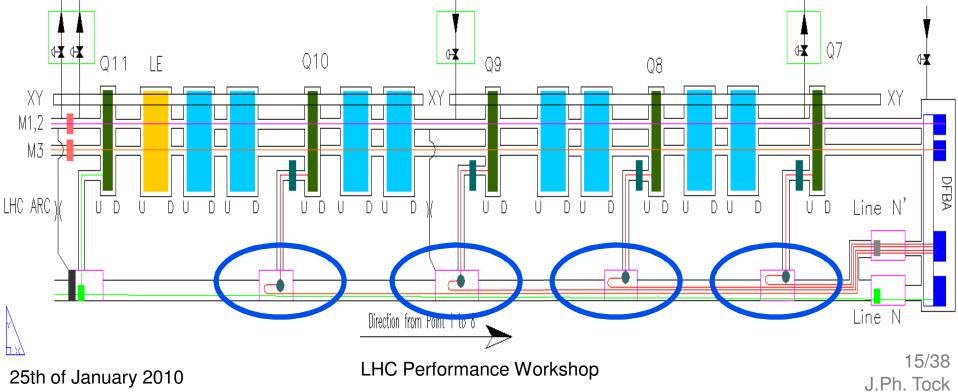
<u>Proposal :</u> <u>To measure all splices before increasing energy higher than 3.5 TeV</u> *This will require time and access*

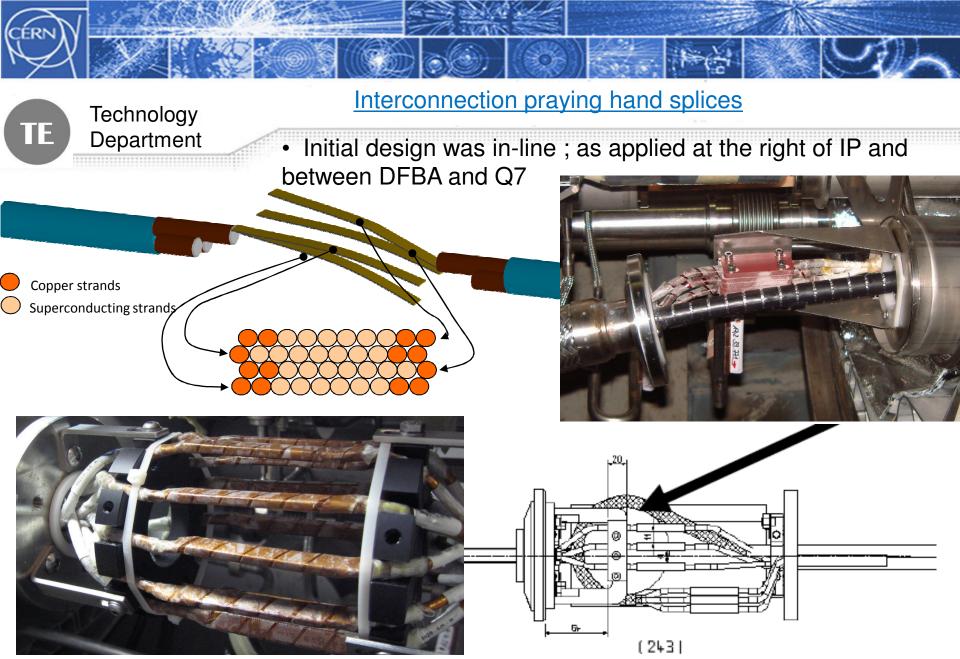
ΠE

Technology

Department


QPS for IPQs/IPDs


IPQ/IPD (pres) Dipole (nQPS) **Characteristic** Detection time 10 msec 10 sec Detection threshold 100 mV 0.3 mV 1 mV sec 3 mV sec Figure of Merit Discharge time < 1 sec50 / 100 sec Supply 2 UPSs 2 UPSs

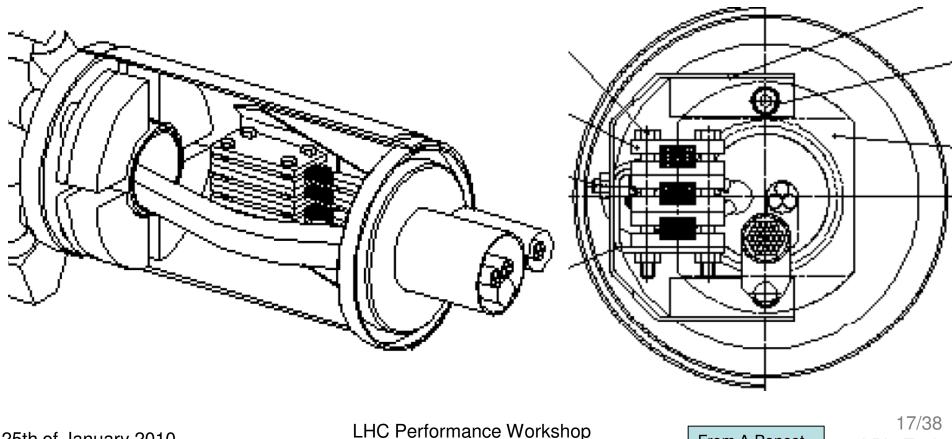

Present QPS for IPQs/IPDs is already "better" than nQPS for dipoles Upgrade of QPS could be done for end of 2010 to protect magnet and busbars separately. This would allow to reduce the threshold and make diagnostics / monitoring measurements of splices

LHC Performance Workshop

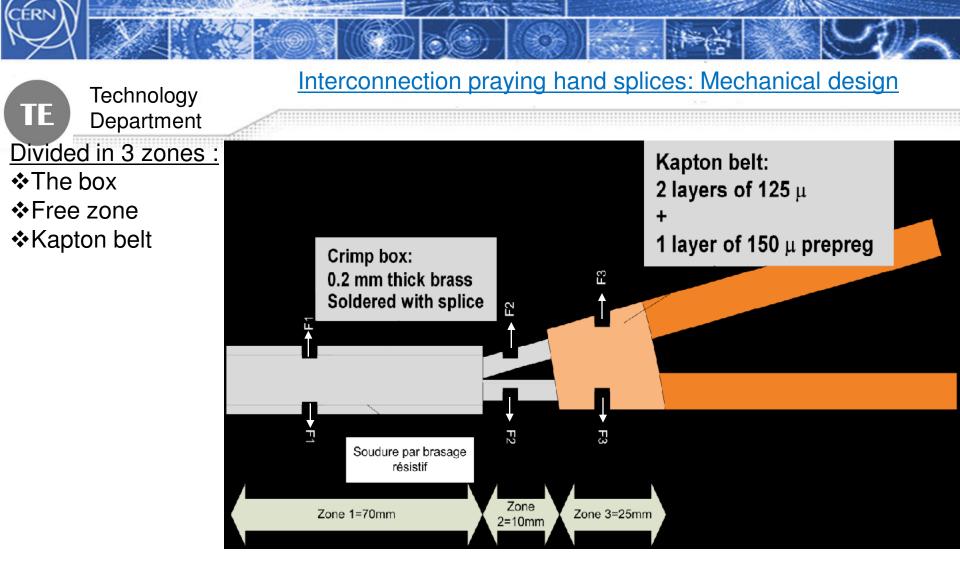
Infos from R Deinz

25th of January 2010

LHC Performance Workshop


From A Poncet

Technology Department


Interconnection praying hand splices

- Not possible have a "U" turn for space limitation reasons
- A too small radius of curvature would have broken superconducting filaments
 <u>So design changed to "hair pin" or "praying hand" splices</u>

From A Poncet

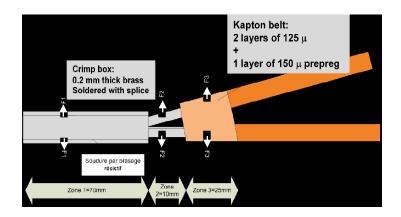
J.Ph. Tock

25th of January 2010

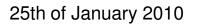
LHC Performance Workshop

From A Poncet J.Ph. Tock

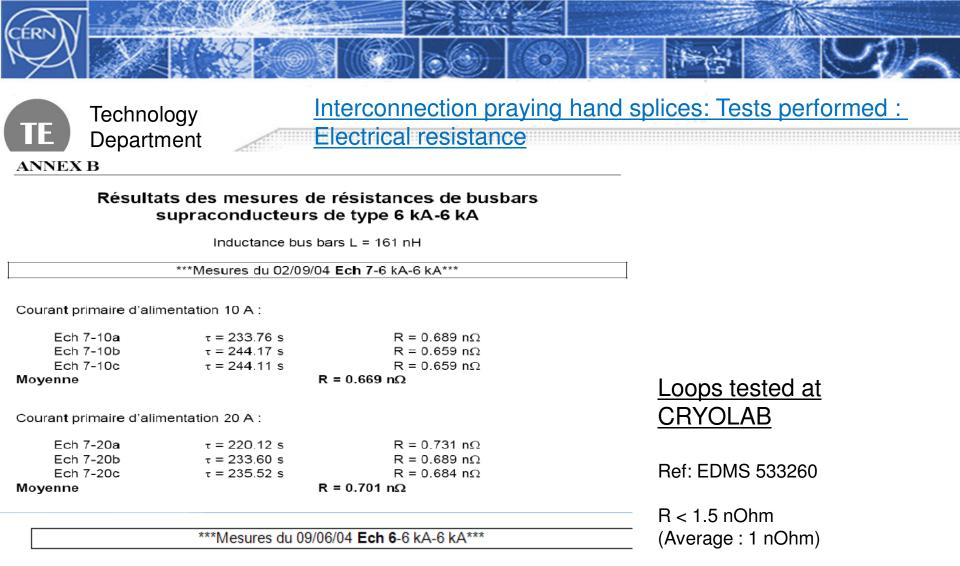
18/38



Technology Department


Interconnection praying hand splices: Mechanical design

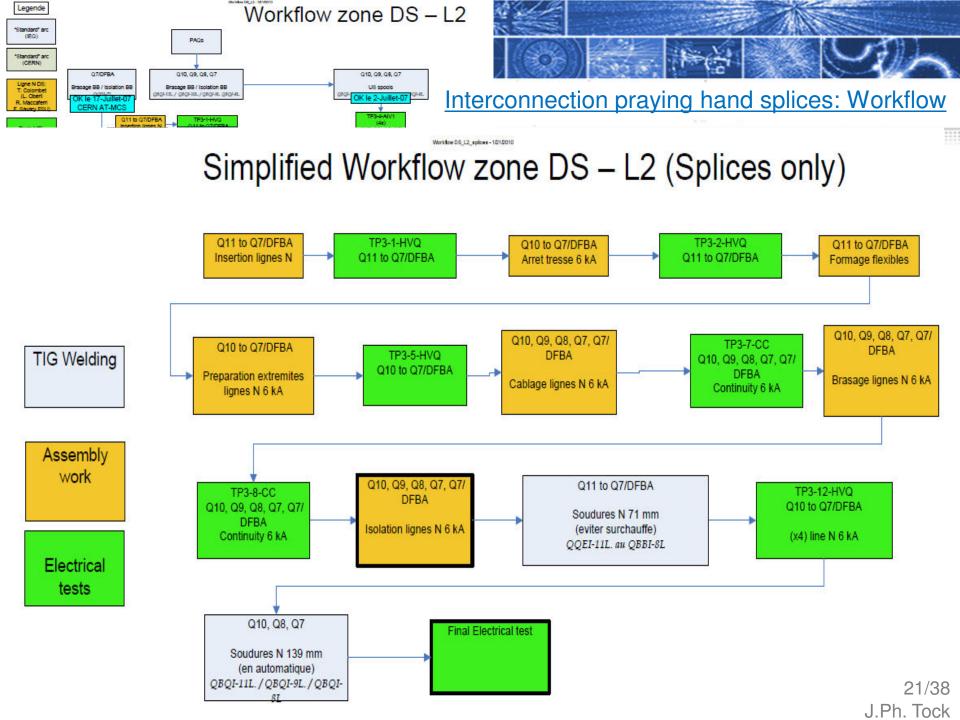
1			
Zone	1	2	3
Name	Box	Free	Belt
Force [N]	138	2	12
σ [MPa]	5	25	1.2
Deflection [mm]		0.008	< 0.1
Yield strength @ 4K [MPa]	Brass>270		333
Infinite lifetime @ RT [MPa]	80 to 100	80 to 100	


Ample margin in all zones

Ref: EDMS 990048

LHC Performance Workshop

20/38


J.Ph. Tock

Observation : l'échantillon comporte une soudure non entrelacée.

	itial <u>d'hélium</u> = 587 mm	Niveau final d'hélium = 578 mm.
Ech 6-20a	τ = 1 42.867 s	R = 1.127 nΩ
Ech 6-20b	τ = 142.456 s	R = 1.130 nΩ
Ech 6-20c	τ = 142.778 s	R = 1.128 nΩ
Manager	D - 4	400 - 0

Moyenne

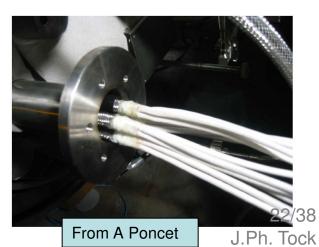
R = 1.128 nΩ

Technology

Department

Interconnection praying hand splices: Assembly procedure

1. Preparation of cable extremities : A : Braid stopping



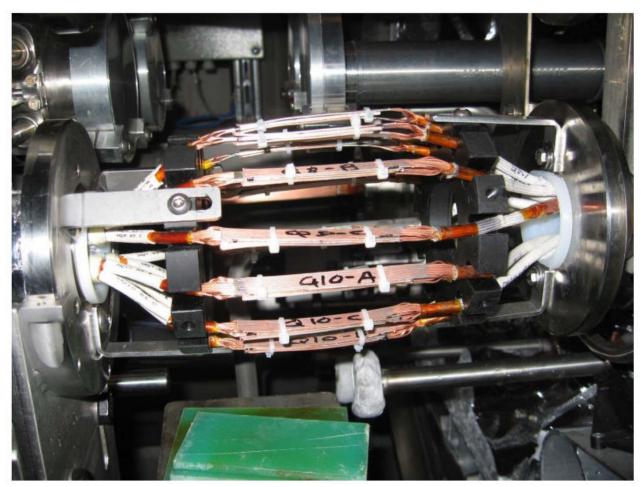
25th of January 2010

LHC Performance Workshop

Arrêt de tresse (L1- Q7-DFB)

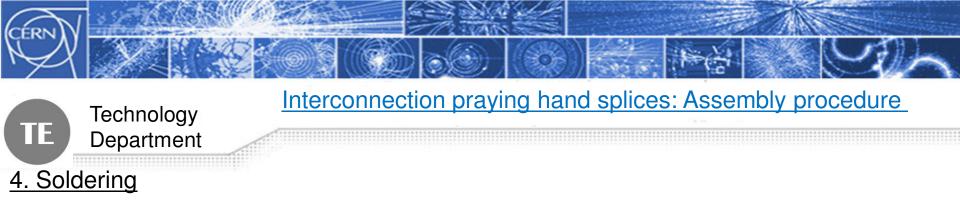
25th of January 2010

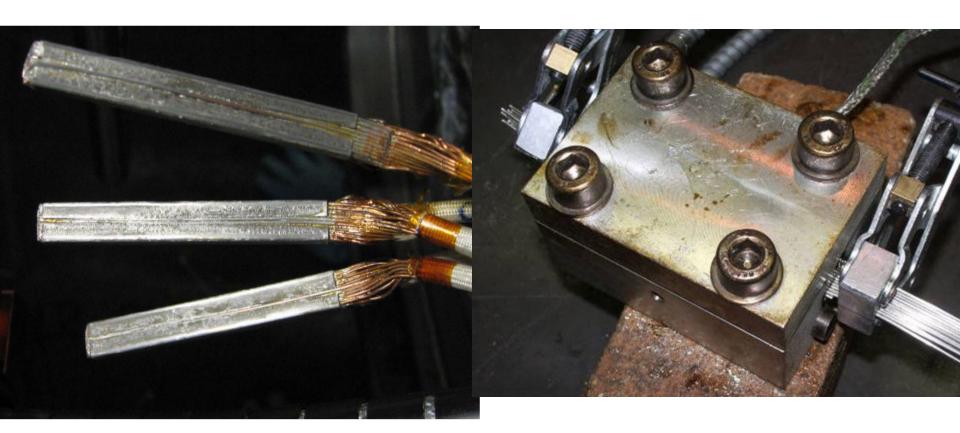
LHC Performance Workshop


From A Poncet

Interconnection praying hand splices: Assembly procedure

3. Cabling without soldering for electrical test



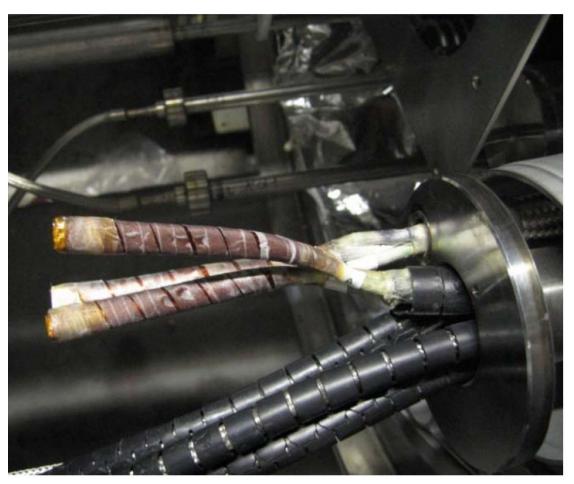

LHC Performance Workshop

From A Poncet

24/38 J.Ph. Tock

25th of January 2010

25th of January 2010


LHC Performance Workshop

From A Poncet

Interconnection praying hand splices: Assembly procedure

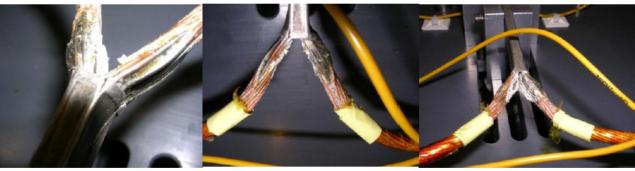
- Wrap 4 layers of polyimide film (overlapping 50 %)
- Wrap self adhesive glass cloth tape at both extremities
- External layer of prepreg

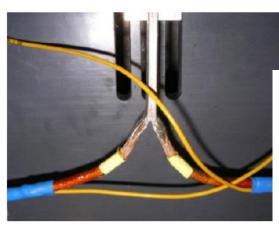
25th of January 2010

LHC Performance Workshop

From A Poncet

J.Ph. Tock


Technology Department Interconnection praying hand splices: Tests performed : Fatigue testing at room temperature By A Ballarino, A Jacob



Ref: EDMS 993835

Test configuration much more severe than actual conditions So tested in FRESCA

Electrical connection after 2200 c

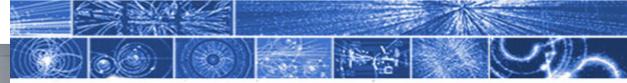

Fig.4 Electrical connection after 11000 cycles

Fig.5 Electrical connection after 17190 cycles

Fresca test – 6 kA

Interconnection praying hand splices: Tests performed : Fatigue testing at cold in FRESCA

Junction tested in FRESCA:

2 tests conducted

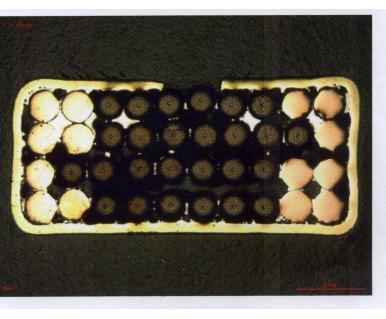
- Constant splice resistance monitoring
- 1328 cycles @ 6 kA ; no resistance increase
- ■1416 cycles @ 9 kA

2.25 mechanical loads lifetime reduction of a factor 10 no resistance increase

- Oxygen free atmosphere/ few MPa so lifetime * > 10
- Visual inspection : No sign of damage
- Micrographic examination done (see next slide)

25th of January 2010

LHC Performance Workshop

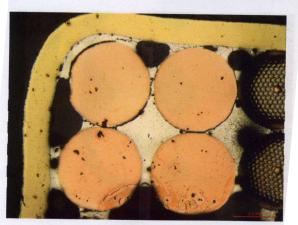


IE

Technology Department

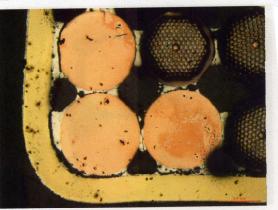
Interconnection praying hand splices: Tests performed : Fatigue testing at cold in FRESCA

Micrographic examinationsConclusions ?



Sample Id: 6 kA hairpin connection

Magnification: 7.1 x coaxial


Date: 03.04.2009

Description: Cross-section, at crimp, sligh presence of brazing

CERN-EN/MME/MM - Metallurgy and Met

Sample Id: 6 kA hairpin connection Description: Cross-section corner 3, at crimp, lack of wetting al magnification: 25.0 x coaxial

Sample Id: 6 kA hairpin connection Description: Cross-section corner 4, at crimp, lack of wetting + presence of cracks in the brazing Original magnification: 25.0 x coaxial

25th of January 2010

LHC Pe

30/38 From A Poncet J.Ph. Tock •No info on L8 (the first sector)
•A lot of pictures for the other points (Not 100 %)

CÉRN

tor81Interconnect/Ph

ee Hotmail

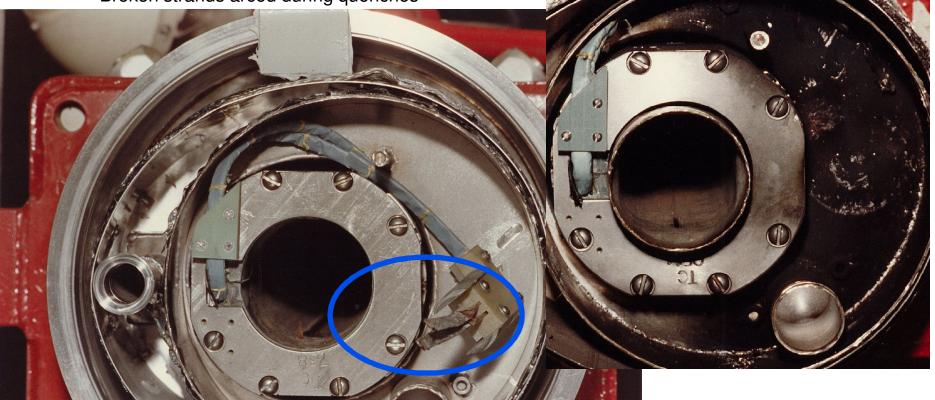
Services

DFS access

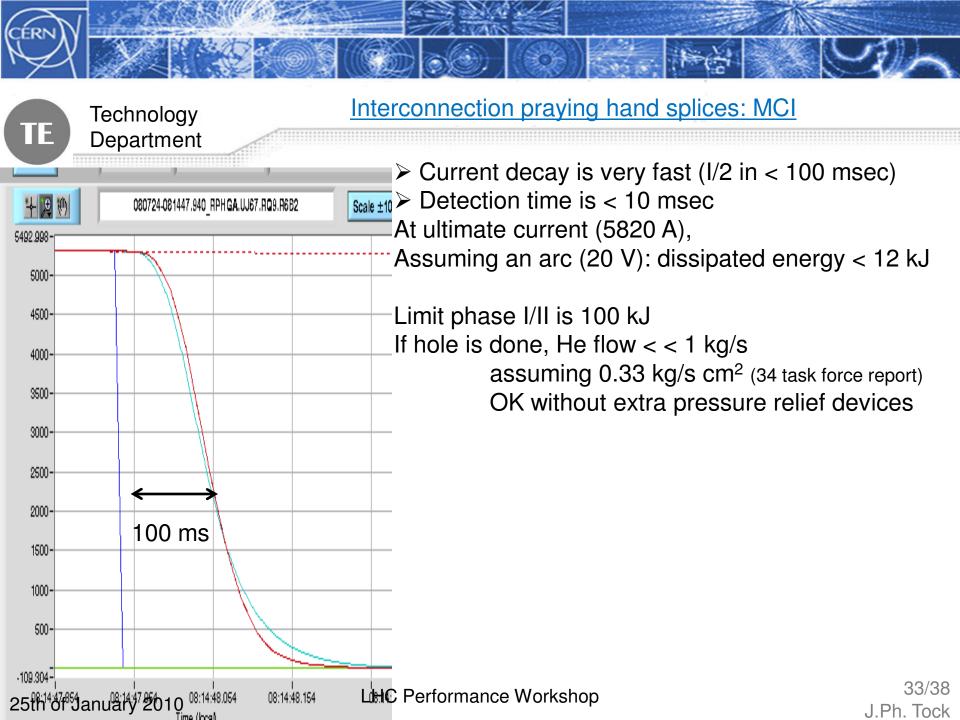
WebDAV ga worldw https:/

Open DFS w

E

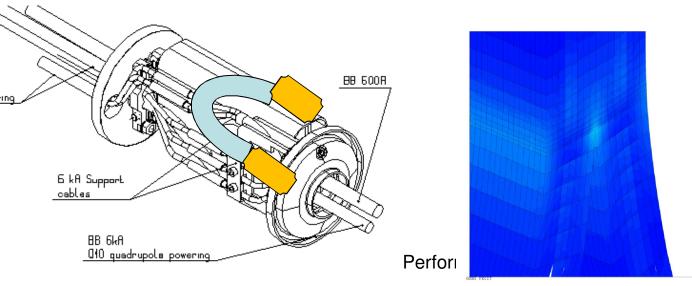

Technology Department

Hand praying splices : A reason to be prudent ?


Experience from Tevatron (P Limon @ splices Task force) 20/01/2010

The TC magnet leads problem

Leads on one end of TC magnets not properly tied together Flexing resulted in broken strands after about <u>100,000</u> ramp cycles, motion of a few cms Broken strands arced during quenches




LHC Performance Workshop

- + Revalidate the design with an extra set of samples in representative configuration (FRESCA)
- + Perform extra mechanical studies (FEM)
- + Make a new design with only in-line splices, test it and qualify it Another cable accepting smaller radius of curvature, 2 splices, ... Considerable amount of work. Priority ? + Tomograph images in parallel with powering to check displacement
 - TBC : Feasibility and safety

34/38

J.Ph. Tock

1.982+0 .08E+0

1.228+4

1.318+0

1.878+03

Intervention in the tunnel : 3 scenarios

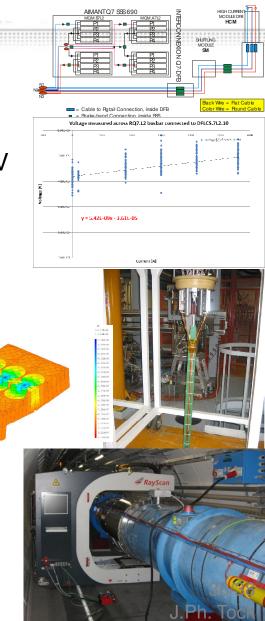
 Open all 23 IC (8 sectors), inspect, consolidate splices if necessary or implement new design

✤ Open only 8L (4 IC in sect 78), inspect and reinforce if necessary (present design)

No intervention

<u>Proposal :</u> Intermediate scenario (Worst case: 1st one and no documentation) Massive intervention not required shortly as current levels are reduced (<5 TeV) To update after next shutdown

25th of January 2010


LHC Performance Workshop

Technology Department

Further work on 6 kA splices

- Complete inventory and schemes of all 6 kA circuits/families
- Map all 6 kA splices at cold, prior to powering at E > 3.5 TeV Time window to be allocated
- Upgrade the QPS for IPQ/IPDs during next shutdown
- Praying hand splices :
 - New samples to definitively validate the present design
 - FEM mechanical verification of the present design
 - Develop an alternative design and qualify it
 - ➢ Refine MCI scenario
 - Tomograph investigation with current (if confirmed)
 - Inspect and possibly reinforce splices in 8 L
 - Then review the situation

The present status of the 6 kA splices has been presented (progress report)

- > No show-stopper has been identified so far
- > Approach is proposed for the praying hand splices
- > Work is still required to carefully scrutinized all 6kA splices
- Priority wrt other projects will need to be defined

Thank you for your attention

25th of January 2010

LHC Performance Workshop