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Motivation for LP-SPL & PS2 upgrade

• Improve reliability of injector chain for LHC era

– Ageing accelerators, operating far beyond initial parameters and stretched 
to their limits to reach ultimate performance.

– Complex operation requiring manpower intense tuning and very special 
expert knowledge and hardware

– Efficient exploitation of high energy machines requires injector complex 
with sufficient performance margin

• Need for new accelerators designed for the needs of (s)LHC

• Remove main performance limitation

– Excessive incoherent space charge                                                             
tune spreads DQSC at injection in the                                                         PSB 
(50 MeV) and PS (1.4 GeV) because                                                         of the 
high required beam brightness N/e*.
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1. Division by 2 of the intensity 

in the PSB (one bunch per 

ring and double batch filling 

of the PS)

2. Increase of the injection 

energy in the PS (from 1 to 

1.4 GeV)

3. Quasi-adiabatically splitting 

of each bunch 12 times in 

the PS to generate a train of 

bunches spaced by 25 ns

4. Compression of bunches to 

~4ns length for bunch to 

bucket transfer to the SPS

5. Stacking of 3-4 PS batches 

in the SPS and acceleration 

to 450 GeV

40 MHz RF

1.1 1011 ppb

&

20 MHz RF

2.2  1011 ppb

10 MHz system

RF = 9.18 MHz

4.4  1011 ppb

10 MHz system

RF = 3.06 MHz

13.2  1011 ppb

Triple splitting
at 1.4 GeV

Quadruple splitting 
at 25 GeV

PS injection:
3+3 bunches
in 2 batches
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Acceleration
to 25 GeV 

PS ejection:
72 bunches

in 1 turn

320 ns beam gap

6 bunches
on h=7

18 bunches
on h=21

72 bunches
on h=84

40 MHz

+ 

80 MHz RF

Complication in operation:

25 ns bunch train production in PS complex
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LP-SPL & PS2 design goals

• For LHC operation

– Significantly increased beam brightness 

– Flexibility for generating various bunch spacings and bunch patterns

– Reduction of SPS injection plateau and LHC filling time 

• General design goals

– High reliability and availability

– Simplification  of operation schemes for complete complex

– Reduced beam losses in operation for complete complex

– Potential for future upgrades of the accelerator complex and         
future p+ (non-LHC) physics programmes
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Injector complex upgrade – proton operation

Linac4: H- Linac

(160 MeV)

LP-SPL: Low Power- Superconducting 

Proton Linac (4 GeV)

PS2: High Energy PS

(4 to 50 GeV – 0.3 Hz)

SPS+: Superconducting SPS

(50 to1000 GeV)

sLHC: “Superluminosity” LHC

(up to 1035 cm-2s-1peak)

DLHC: “Double energy” LHC

(1 to ~14 TeV)

PSB

SPS
SPS+

Linac4

LP-SPL

PS

LHC / 

sLHC DLHC
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160 MeV

1.4 GeV
4 GeV

26 GeV
50 GeV

450 GeV

1 TeV

7 TeV

~ 14 TeV

Linac250 MeV

Proton flux / Beam power

PS2

Stage 1: Linac4 

- construction 2008 – 2014

Stage 2: PS2 and LP-SPL:  preparation of 

Conceptual Design Reports for 

- project approval mid 2012

- start of construction begin 2013
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72 MeV/n

5.88 GeV/n

12.32 GeV/n

177 GeV/n

2.76 TeV/n

Linac34.2 MeV/n
Linac3: Heavy Ion Linac

LEIR: Low Energy Ion Ring

PS2

LEIR

135 MeV/n

Pb27+

Pb27+

Pb54+

Pb54+

Pb82+

Pb82+

Injector complex upgrade – ion operation

7Chamonix 2010M. Benedikt



Performance requirements and parameters

• Starting point for the design is brightness (N/en) for LHC beams

– Design goal: Twice higher brightness than “ultimate” 25ns beam            
with 20% intensity reserve for transfer losses

• 4.01011ppb = 2  1.71011  1.2 in transverse emittances of 3mm

• Transfer energy LP-SPL – PS2

– Determined by the beam brightness of the LHC beam

– Limiting the incoherent space charge tune spread at injection to          
below 0.2 requires

• 4 GeV injection energy

• PS2 Extraction energy

– Injection into SPS well above transition energy to reduce space charge 
effects and TMCI

– Higher energy gives smaller transverse emittances and beam sizes and 
therefore reduced injection losses

– Potential for long-term SPS replacement with higher energy

• ~50 GeV extraction energy
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LHC beams from SPL & PS2 (i)

• Nominal bunch train at PS2 extraction

– h=180 (40 MHz) with bunch shortening to fit SPS 200 MHz.

– 168 buckets filled leaving a kicker gap of ~ 300 ns (50 GeV!)

• Achieved by direct painting into PS2 40 MHz buckets using SPL chopper.

• No sophisticated RF gymnastics required.

• Beam parameters

– Extraction energy: 50 GeV

– Maximum bunch intensity: 4E11 / protons per LHC bunch (25 ns)

– Bunch length rms: 1 ns (identical to PS)

– Transverse emittances norm. rms: 3 mm (identical to PS)

– Alternatively “low-emittance” beams e.g. 1.71011 in ~1.5mm

• Any other bunch train pattern down to 25 ns spacing

– Straightforward with SPL 40 MHz chopping and PS2 40 MHz system

• Again without sophisticated RF gymnastics
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LHC beam from PS2 (ii)

• Example 25 ns beam from LP-SPL – PS2:

– PS2 will provide “twice ultimate” LHC bunches with 25 ns spacing

– Bunch train for SPS twice as long as from PS

– Only 2 injections (instead of 4) from PS to fill SPS for LHC

– PS2 cycle length 2.4 s instead of 3.6 s for PS

• Reduces SPS LHC cycle length by 8.4 of 21.6 s (3x3.6 – 1x2.4)

• Reduced LHC filling time

1  2 Booster

SPS injection plateau 3x3.6 s = 10.8 s

up to 4 consecutive injections

1  2 Booster 1  2 Booster 1  2 Booster

PS

LP-SPL LP-SPL

SPS plateau ~2.4 s

2 injections

PS2
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LP-SPL – block diagram & beam parameters

Kinetic energy (GeV) 4

Beam power at  4 GeV (MW) 0.12

Rep.  period (s) 0.6

Protons/pulse (x 1014) 1.1

Average pulse current (mA) 20

Pulse duration (ms) 0.9

LP-SPL beam 

characteristics

Length: ~430 m
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PS2 main parameters

Parameter unit PS2 PS

Injection energy kinetic GeV  4.0 1.4

Extraction energy kinetic GeV 20 - 50 13 - 25

Circumference m 1346 628

Max.  bunch intensity LHC (25ns) ppb 4.0 x 1011 1.7 x 1011

Max.  pulse intensity LHC (25ns) ppp 6.7 x 1013 1.2 x 1013

Max. pulse intensity FT ppp 1.0 x 1014 3.3 x 1013

Linear ramp rate T/s 1.5 2.2

Repetition time (50 GeV) s ~ 2.4 1.2/2.4

Max. stored energy kJ 800 70

Max. effective beam power kW 350 60

In comparison with PS: line density x 2, circumference x 2, energy x 2
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Implementation and commissioning

1. Staged CE work (cf. SPS – TT40)

– Excavation and CE work in parallel to operation for SPL tunnel, 

LP-SPL to PS2 TL, PS2 ring and injection/extraction cavern

– CE connection between TT10 and PS2 cavern during shutdown (~ 4 months)  

for ion injection line and extraction channel of all beams towards SPS

• Dismantling/protection of ~100 m of TT10 equipment in the 2 regions 

concerned

• Physical tunnel connection & CE work

• Installation of removable (RP) shielding in tunnel connection

• Reinstallation of (old) TT10 equipment

2. Commissioning of LP-SPL & PS2 in parallel to physics with PS complex

– LP-SPL commissioning from Linac4 with every 2nd pulse (2 Hz operation)

– PS2 commissioning with H- from LP-SPL

– Alternatively low int. PS2 commissioning with p from PS complex via TT10

• Requires earlier installation of new TL from TT10 to PS2 

(can be accommodated in normal shutdown)

• Would allow also commissioning with ions from LEIR/PS via TT10
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Implementation and commissioning

14PAC 2009 Vancouver PS2 Design Optimization, M.Benedikt

PS2

LP-SPL

Linac4

LP-SPL to PS2

PS

PS/LEIR to SPS / PS2

SPS
PS2 to SPS

• 2 Hz Linac4 operation with   

destinations PS-Booster and LP-SPL

• Every other pulse for LP-SPL 

commissioning 

• PS2 commissioning with LP-SPL beam

TT10 to PS2



Putting SPL & PS2 in operation for physics (i)

• Assumptions

– Most SPS upgrades have taken place independently of the construction and 

setting up of LP-SPL & PS2 (see SPS Upgrade Working Group)

• e-cloud mitigation

• possibly new RF system, internal dump, etc.

– LP-SPL & PS2 have reached performance identical to top-performance of the 

Linac4 – PSB – PS injector complex in stand-alone commissioning 

• Remaining SPS and TT10 modifications

– Removal of shielding in the two TLs between PS2 and TT10

– TT10 beam line rearrangement and installation of new elements from/to PS2

– Replacement of SPS injection system with new 50 GeV injection system

• Kickers and septa

• Cabling and services

• PFNs and converters

– Normal shutdown of > 4 months is considered compatible with these 

modifications (preparation in preceding shutdowns)
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Putting SPL & PS2 in operation for physics (ii)

• SPS injection and TT10 commissioning

– New TL PS2 – SPS, TT10 modifications and SPS 50 GeV injection system

– Short duration expected since only TL modification and new injection system.

– Ion injection line & PS2 fast injection commissioning can be done with 

ions/protons from PS (possibly already earlier if TL is installed)

• Further increase of LP-SPL , PS2 and SPS performance to its final level 

will take place in parasitic mode in parallel to physics operation.

• All construction, integration beam commissioning and switch to 

operation of the chain LP-SPL & PS2 can be done in parallel to physics 

operation, using “normal-length” shutdowns.

– No specific requirements on LHC planning and injector chain availability for 

LHC operation.
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LP-SPL & PS2 Prelminary Project Schedule
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LP-SPL Cost estimate

Item
Cost

(MCHF)

RF equipment (80 klystrons for 160 b=1 cavities + 66 IOTs for 66 b=0.65 cavities + power 
supplies, waveguides, LLRF, interlocks & controls, etc.) and 2 test places for cryomodules.

219 45.6 %

Civil Engineering (underground & surface buildings) + cooling/ventilation & electrical 
infrastructure

113 23.5 %

Cryomodules (20 cryomodules with 8 b=1 cavities + 11 cryomodules with 6 b=0.65 cavities 
+ 226 tuners & couplers + 80 quadrupoles + 30 BPMs)

79 16.4 %

Cryogenics (6.4 kW at 4.5 K + distribution) 17 3.5 %

Dumps (~1.4 and 4 GeV) and ejection system to ISOLDE (20 ms rise/fall time deflection 
system + stripping foil and H0 dump)

15 3.1 %

Beam instrumentation (transformers, beam loss monitors, laser wire profile monitors, 
screens…)

15 3.1 %

Controls (including machine interlocks) 10 2.1 %

Accelerator vacuum (including isolation vacuum in cryomodules) 8.5 1.8 %

Safety & access (monitors, alarms, access doors with control system) 3 0.6 %

Magnets (normal conducting in the transfer line + power supplies) 1.3 0.3 %

TOTAL 480.8 100 %

18Chamonix 2010M. Benedikt



PS2 Cost estimate

Item
Cost

(MCHF)

Civil Engineering (underground work PS2 & related TLs & surface buildings, environment shaping) 90 22.0 %

Main magnets (main dipoles, 4 types of main quadrupole magnets, dipole correctors, quadrupole 

correctors, skew quadrupoles, chromaticity and resonance sextupoles, octopoles) 
70 17.1 %

RF equipment (18.5-40 MHz tuneable system: cavities + power supplies, waveguides, LLRF, 

interlocks & controls, etc., transverse dumper system)
58 14.1 %

Injection and extraction elements, tune kickers, dump kickers and dump lines, PFNs for fast kickers 

and bumpers, electronics and controls, cabling
45 10.9 %

Technical infrastructure (electrical distribution, cabling, cooling and ventilation, piping, plants, 

access control, safety, heavy handling)
43 10.5 %

Transfer lines (SPL to PS2 (H-), existing TT10 to PS2 (ions from LEIR), PS2 to SPS and PS2 to and 

injection dump); all equipment included (scaled from CNGS transfer line) without CE. 
36 8.8 %

Power converters (main converters,  auxiliary correction magnets converters, septa converters) 29 7.1 %

Vacuum system (coated vacuum chambers, ion and NEG pumps, cabling, bakeout equipment) 13 3.2 %

Beam instrumentation (110 beam position monitors, 250 fast beam loss monitors, wire scanner, dc 

and fast BCTs, wall current monitors, tune measurement, controls and electronics, cabling.
10 2.4 %

Control system (control HW and software, racks, interlock system, timing system, cabling) 10 2.4 %

Collimation and machine protection (primary and secondary collimators  & masks for TLs and PS2) 6 1.5 %

TOTAL 410 100 %
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Cost estimate summary

20

• Cost comparison LP-SPL with SNS Linac:

– A comparison of the estimates for RF, cryomodules and cryogenics has been 

made with the corresponding figures from SNS:

• LP SPL: 304 MCHF (63% of total LP SPL material cost)

• SNS: 378 MCHF (includes manpower cost)

– SNS number is 20% larger than the CERN estimate, but it includes manpower 

and it assumes an RF system capable of 6% duty factor instead of 0.04%

• The LP-SPL estimate is credible!

• Total material cost estimate for LP-SPL, PS2 and SPS upgrade (~65 MCHF, 

see SPSU WG) is around 1000 MCHF (incl. FSU, consultancy).

• Manpower resources:

– Estimated manpower for PS2 construction: ~ 700 FTE (~110 MCHF, 585 k/my or 

400 k/my without CE+TI) 

– Assuming similar ratio M/P for LP-SPL and SPS gives: ~ 900 FTE (~140 MCHF)

• Total cost for LP-SPL, PS2 and SPS upgrade (P&M) is around 1250 MCHF.
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Failures 2007-2008 (first 2 years) [Stuart Henderson (SNS), SNS AAC, Feb. 24, 2009   ORNL]
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Operation aspects (1/2)

SPL reliability: lessons from SNS

– Apart from conventional causes, the main sources of problems are with HV systems 

and RF, linked to high duty cycle, stressing the equipment (HV, modulators, RF)

• The LP-SPL will be easier/better than SNS because of the low duty factor

– The SC cavities and the cryogenics system do not contribute noticeably

• High availability can be expected from LP-SPL
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Operation aspects (ii) - PS2 and summary

• PS2 operation aspects

– Important simplification of many operational aspects compared to PS

• No transition crossing with NMC

• Direct painting of LHC bunch structures – no complex RF manipulations

– Strong impact on requirements on equipment, tuning, expert know-how, beam 

losses, beam availability, etc.

• General aspects

– The present injector complex operates close to (or at) its limits for LHC

– LP-SPL and PS2 will allow simpler operation, provide sufficient margin and 

flexibility to fully exploit LHC

• Simpler tuning and easier maintenance of beam quality, better availability

• Reduced (manpower) requirements on operation and expert teams

– One circular machine & injection/extraction/transfer systems less in the chain

– Machines will be built with new equipment, using state-of the art technology, 

operating well below limits, with high multiplicity and well documented.

• Positive impact on component and machine availability.

• Reduced (manpower) requirements for maintenance and HW teams

• Simplified spare part management
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Conclusions

• LP-SPL & PS2 upgrade has been designed to provide large 

flexibility and operational margin for full exploitation of the LHC 

with large potential for upgrades.

• Total material cost ~1000 MCHF, total manpower cost ~250 MCHF

• Integration and commissioning can be done without impact on 

LHC operation using “normal” shutdowns.

• Reliable and state-of the art equipment with high multiplicity for 

efficient maintenance and spare policy and manpower resources

• Significant simplification of operation processes minimizing 

breakdowns, beam quality fluctuations and operator intervention 

and tuning needs. 

• The new injector complex will be a solid basis for future proton 

operation and upgrades at CERN offering large potential and 

flexibility for LHC and other applications.
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Reserve slide

High intensity physics beam for SPS

– SPL & PS2 provides up to twice line density of PS high-intensity beam

– Twice circumference gives up to~4 times more intensity in total 

• ~1.0E14 per PS2 cycle (~8E13 with a longer kicker gap) 

– Five-turn extraction will fill SPS with single shot instead of two from PS

• Twice more intensity in SPS via twice higher line density.

• No injection flat bottom in the SPS (two shot filling from PS presently)

– Clean bunch to bucket transfer PS2 40 MHz to SPS 200 MHz (cf. LHC)  

• ~6E11 protons per PS2 40 MHz bucket  1.2E11 in every fifths SPS 200 MHz 

bucket  (extraction kicker gap by leaving buckets unfilled at PS2 injection)

SPS 23 micros

SPS 23 micros

PS2 = 15/7PS = 15/77 SPS
2/77 SPS non-filled 

because of geometry 

(0.6 micros)

5 gaps for LSS4 

extraction kicker 

rise/fall (1 micros)
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