Overview of all superconducting splices in the LHC machine

N. Catalan Lasheras
Chamonix 2010 LHC Performance Workshop
25 January 2010

(2) Most Visted प】 Manuscipt Centras

The making of the electrical interconnections in the LHC
Images from the fabrication of the DFBX boxes
(LBNL procurement of the LHC IR feed boxes)
at Meyer Tool and Manufacturing, Inc.
J.Ph. Tock on behalf of the AT-CRI-Cl section:
B. Skoczen,
A. Bastard,
T. Colombet,

JM. Hubert
A. Jacquemod,
F. Laurent,
L. Perrollaz,
S. Triquet

Total current

 through one interconnection :about 110000 A

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics

sy LBNL. (Click on the assembly model image above for a larger view.) Contact
view, upgrade, and repair work
iks to various documents)

PROPOSED METHOD FOR THE VERIFICATION OF THE LHC BUS DURING COMMISSIONING AT CRYOGENIC CONDITIC
M. Calvi, L. Bottura and F. Rodriguez Mateos

PERFORMANCE OF THE SUPERCONDUCTING CORRECTOR MAGNET CIRCUITS DURING THE COMMISSIONING OF THE LHC
W. Venturini Delsolaro ${ }^{1}$, V. Baggiolini ${ }^{1}$, A. Ballarino ${ }^{1}$, B. Bellesia ${ }^{1}$, F. Bordry ${ }^{1}$, A. Cantone ${ }^{1}$, M. Casas Lino ${ }^{1}$, A. Castaneda Serra ${ }^{1}$, C. Castillo Trello ${ }^{1}$, N. Catalan Lasheras ${ }^{1}$, Z. Charifoulline ${ }^{1}$, C. Charrondiere ${ }^{1}$, K. DahlerupPetersen ${ }^{1}$, G. D.Angelo ${ }^{1}$, R. Denz ${ }^{1}$, S. Feher ${ }^{2}$, R. Flora ${ }^{2}$, M. Gruwe ${ }^{1}$, V. Kain ${ }^{1}$, M. Karppinen ${ }^{1}$, B. Khomenko ${ }^{1}$, G. Kirby ${ }^{1}$, A. MacPherson ${ }^{1}$, A. Marqueta Barbero ${ }^{1}$, K.-H. Mess ${ }^{1}$, M. Modena ${ }^{1}$, R. Mompo ${ }^{1}$, V. Montabonnet ${ }^{1}$,
 A. Siemko ${ }^{1}$, M. Solfaroli Camillocci ${ }^{1}$, Y. Thurel ${ }^{1}$, H. Thiessen ${ }^{1}$, A. Vergara Fernandez ${ }^{1}$, A. Verweij ${ }^{1}$, R. Wolf ${ }^{1}$, M. Zerlauth ${ }^{1}$

1-CERN: European Organisation for Nuclear Research 2-FNAL: Fermi National Accelerator Laboratory

Abstract
The LHC is a complex machine requiring more than 7400 superconducting corrector magnets distributed along a circumference of 26.7 km . These magnets are powered in 1446 different electrical circuits with currents ranging 600 A corrector magnets form the most diverse differentiated group. About 60000 high current

MAGNET TYPES, TARGETS Compared to the main magnets, the LHC correctors operate rather far from the critical current (table 1). called for a cheap and robust design [2], with relatively large mechanical tolerances. Therefore some training could be expected and was indeed observed during production (see below).

1 é
t CERN includes the poweri from 55 A to 11.8 kA . A large s , which can only be validat 1 effects related to possible fa uench and detection currents, del with the surrounding cool completed with a sensitivity : rs. Finally, the implications - first powering are discussed.

CERN
Switzerland

Engineering Specification

ACCESS AND POWERING CONDITIONS FOR THE SUPERCONDUCTING CIRCUITS IN LHC

Following the incident abstract
Following the incident on 19 September 2008, more severe access restrictions to underground areas were introduced for the re-powering of electrical circuits with
superconducting magnets. In this document two phases of powering are defined, superconducting magnets. In this document two phases of powering are defined,
phase I and phase II. During powering in phase I the current in the different electrical circuits is limited and the probability for massive aocidental release of
helium due to powering is considered to be negligible. The access conditions are much less severe than in phase II, where the circuits may be powered to their nominal current for the physics energy. The parameters for powering in phase I are defined.

Outline

\rightarrow Splices Inventory. Numbers and circuit criticality

- Stored Energy
- MIITs and hot spot temperature
$\rightarrow 600$ A corrector circuits
- Brief description
- Line M and N . US welding
- PCS measurements during HW Commissioning
- Existing NC
\rightarrow Inner triplet 13 kA splices
\rightarrow Future
- MCl
- Missing studies

Superconducting splices. How many?

	Line	Magnet Splices	Interconnection splices	Current rating
RB	M 3	9856	3372	13 kA
RQF/RQD	$\mathrm{M} 1, \mathrm{M} 2$	3940	6744	13 kA
Spool Pieces	$\mathrm{M} 1, \mathrm{M} 2$	30860	33920	600 A
Correctors	N	27006	16000	600 A
Individually powered magnets	N^{\prime}	1644	532	6 kA
Inner triplet quads	N^{\prime}	80	112	13 kA
Inner triplet correctors	N^{\prime}	704	480	600 A

\rightarrow More than $100000\left(10^{5}\right)$ splices!!

Energy Stored in the magnets

Magnetic energy stored in the circuit [GJ]

Magnetic energy stored in the magnets [GJ]

Criticality of a SC circuit

Quench of the bus-bar in adiabatic conditions. Thanks to G. Kirby
\rightarrow Main circuits incorporate more protection

- Cold diodes
- Energy Extraction
- Larger bus-bar cross-section
\rightarrow MIITs and hot spot temperature estimated in the bus-bar according to real decay data and bus-bar section
- Not a factor 10^{4} but a factor 2
- Always safe as in nominal conditions
\rightarrow What about failures
- In the quench detection?
- In the EE switches opening?

Splice types in the LHC.

He II @ 1.9K, 1Bar

\rightarrow Splices vary in length, copper to SC ratio, insulation, mechanical fixation
\rightarrow You will hear in the following talks about 13 kA and 6 kA

Corrector circuits 600 A. Lines M and N

The making of the electrical interconnections in the LHC

\rightarrow Spool pieces busbars: Junction technology: Ultrasonic welding

>Clean method (no flux)
> Oxyde destruction by friction

>Contact resistance between 3 and 5 nOhm

- High reproducibility and reliability >On-line process control
$>$ Mechanical resistance : equivalent to base material
>Fatigue life : more than 500 cycles at room and cryogenic temperatures

Line M interconnection

The making of the electrical interconnections in the LHC
\rightarrow Spool pieces busbars: Electrical insulation

J.Ph. Tock

AT-CRI

Review of the LHC Electrical Interconnects \& Electrical Quality Assurance Procedures CERN $-18^{\text {th }} \& 19^{\text {th }}$ March 2004

EDMS 455919 15/27

Line N Interconnection

The making of the electrical interconnections in the LHC

\rightarrow Auxiliary busbars :Assembly procedure

HALF CELL

Tool for cable pulling

54 m

+ Fully assembled cable (Plug included) on a transport reel + Line N board components + Protection covers for transport + Wires identification + Certificate of conformity + Cable segment identifier

Line N Interconnection

The making of the electrical interconnections in the LHC

\rightarrow Auxiliary busbars:Assembly procedure

Operation \#LI-2-05
"Assemble the connection box"
Operation \#LI-2-06 "Perform electrical test"
Operation \#LI-2-07 "Weld line N auxiliary bus
bars
Operation \#LI-2-08 "Perform electrical test"
Operation \#LI-2-09
Operation \#LI-2-10
"Insulate electrically the
aux.
, "Eltrasonic welding ical test"

\rightarrow Reported by D. Tommasini to MARIC on November 2006 after the inspection of the first installed sector

- Presence of insulation between wires
- Bad alignment with reduction of contact surface
\rightarrow Cryolab measurements showed 4 to 19 nOhms
\rightarrow US welding machines put in conformity
\rightarrow Suspected interconnections re-done during following warm-up
\rightarrow Test proposed during powering to spot catastrophic cases

PCS splice verification

\rightarrow Test systematically done during powering tests for all 600 A circuits
\rightarrow Current plateau at minimum current (200 A). Resistance deduced from QPS voltage measurements.
\rightarrow Repeated at nominal current. Data stored in MTF
\rightarrow Assumed resolution $<1 \mu \mathrm{Ohm}$

Results from the last powering campaign

\rightarrow Resistance is indeed proportional to the number of splices but noise is very high.
\rightarrow Noise depends on the circuit type. Cable length, number of magnets and inductance.
\rightarrow RCO circuit is a 120 A circuit and test is done at 100 A .

Results from last hardware commissioning campaign

\rightarrow Expected value is between 4 and 6 nOhms
\rightarrow RQ6 (6xMQTL) has a higher average splice value.

- Systematic. May be due to internal splices in the magnet
\rightarrow RCO splices are nominally higher than others

First circuits to verify and re-measure

Resistance at nominal current measured during Powering

Average resistance per splice

Existing NC in 600 A circuits

$\begin{array}{ll}\text { Given Comments (3 records) Hide } & \\ & \text { Normal display | Text display | Show all pages | Hide all pages Sort: Date | Reviewer | Page }\end{array}$
Giorgio D'ANGELO on 2009-03-20, 14:50 said:

Since this circuit is not needed for the 1st run of LHC at $5 \mathrm{TeV}, \mathrm{HCC}$ decided to postpone investigation due to time constrain.
Giorgio D'ANGELO on 2009-04-09, 15:40 said:
Diagnostics performed on 26th of March 2009, shows that this circuit is open between position B12L1 and B11L1
This circuit cannot be used until it is repaired (need to warm up the sector and open the interconnections).
Giorgio D'ANGELO on 2009-10-08, 18:18 said: \quad Initiated comment This circuit was tested during TP4-E campaign (Oct.2009) and the problem is still present. Cold circuit is isolated from ground and other circuits. It is condemned at the level of power converter.

EDMS Hyperlinks

Sketch of the RCO.A81.B2 circuit - External aperture

Circuit found open, at 1.9 K , on 23/03/2009 between B12.L1 and B11.L1

Position:	Magnet name:	Upstream position:
C12L1	MBB_3094	26171.6225
B12L1	MBA_3174	26187.2825
A12L1	MBB_1144	26202.9425
Q11L1	SSS_524	26218.6025
	CC	26226.3475
B11L1	MBA_1158	26240.0642
A11L1	MBB_1103	26255.7242
Q10L1	SSS_641	26271.3842
B10L1	MBA_1160	26279.1292

B10
MBA_1
26279.1292

Inner triplet 13 kA splices

\rightarrow Two double bus-bars $\mathrm{Cu} / \mathrm{SC}$

- 5 kA and 8 kA
- Brazed similarly to the 6kA flat cable
\rightarrow All splices protected together with the magnets at a 100 mV threshold

NC 948545 on a 120 A octupole corrector

Number: $\mid \mathbf{9 4 8 5 4 5}$	ver. $\mathbf{1}$
EDMS Id: $\mathbf{9 4 8 5 4 5}$	

QN-ELQA-TP4E-IGC-RGOSX3.L1-001 Giorgio D'ANGELO
Report - Non conformity
2008-08-12

Given Comments (1 record) Hide

Normal display \mid Text display \mid Show all pages | Hide all pages Sort: Date | Reviewer | Page Richard MOMPO on 2009-07-16, 09:10 said: During standard ELQA campaign at warm (TP4 tests) performed on 14/07/2009, circuit RCOSX3 was found open. After a basic investigation, the circuit is open below the cold vtaps of the 120 A current leads. This circuit is isolated from ground and from the other circuits.

EDMS Hyperlinks
This nacre
\rightarrow As for the spool, high resistance was seen during the EIQA tests ($>\mu \mathrm{Ohm}$)
\rightarrow Need to open the cryostat to locate and repair the fault

Conclusions

\rightarrow What is the maximum credible incident (MCI) affecting each of these circuit types

- Quench detection failing? Non propagating quench
- Arcing in a spool piece next to M1, M2 line
- ...?
\rightarrow Work ahead of us:
- Investigation of excessive resistance in 600 A circuits
- Verify the splice parameters (mainly for US magnets)
- Evaluate heating of the bus-bar under accidental conditions

