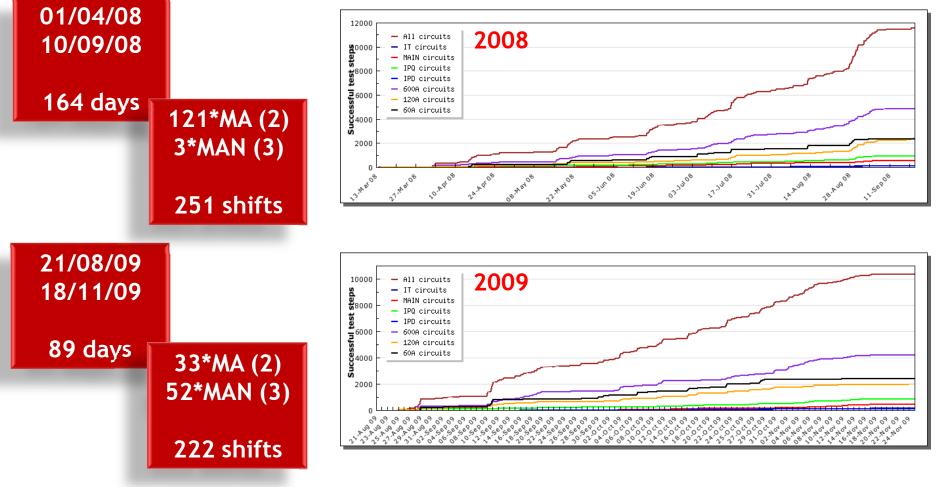


Scope and results of hardware commissioning to 3.5 TeV and lessons learnt

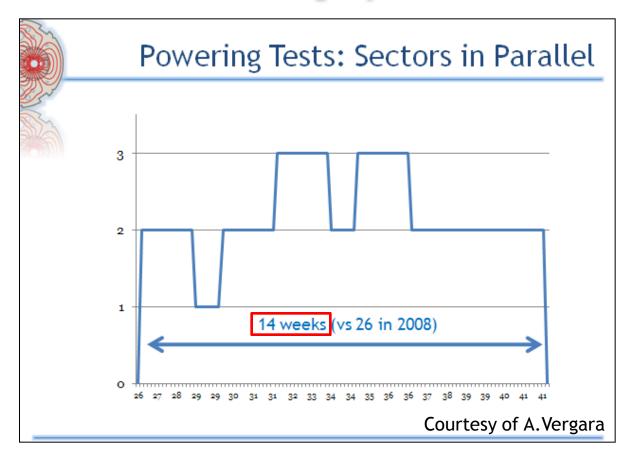
Preconditions for operating at 5 TeV in 2010

Session 1 - 25th January 2010


Commissioning to 1.18TeV Efficiency \Box 2008/2009 Lesson learnt □ Where can we still improve? Commissioning to 3.5TeV Situation Planning (where are we?)

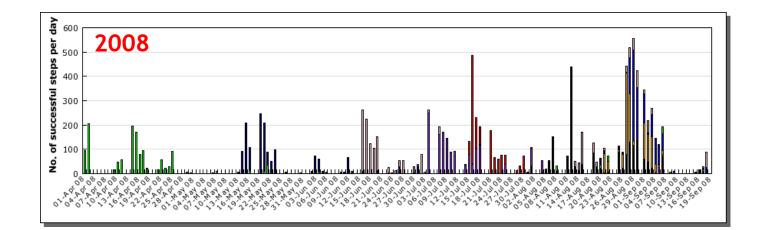
Given the scope of the investigation, the outcome is not designed to just prove the success or failure, but rather to establish a way for yet better performance

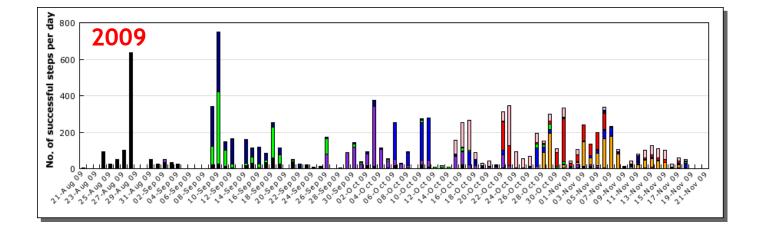
EFFICIENCY: Ability to accomplish a job with a minimum amount of time and effort


29 shifts and 74 days less...

...resulting in 88% of shiftwork, but almost half of daytime (54%)!!

2009 HW Commissioning day - 19th March 2009


14 weeks * 7 days/week = 98 days (we actually did it in 89!!)


43 days per sector

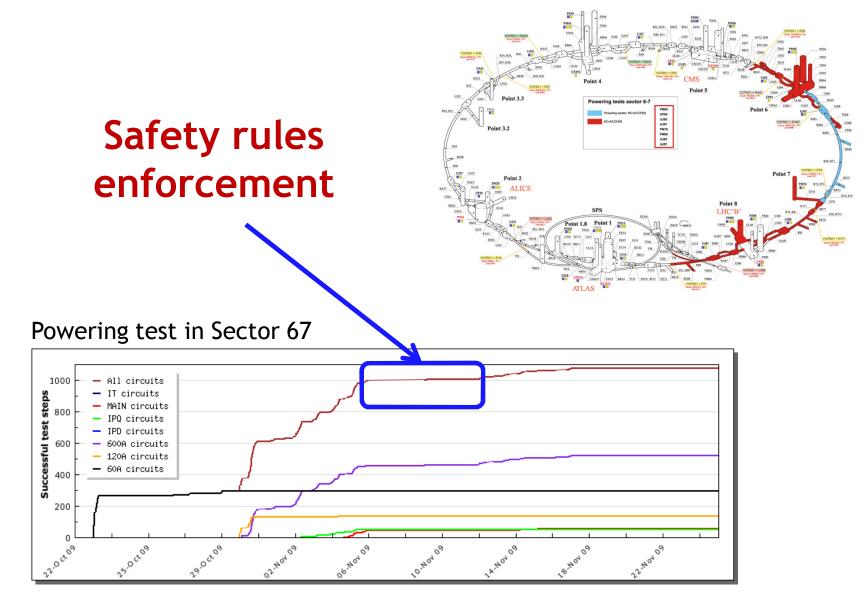
19 days the fastest one

32 days per sector

16 days the fastest one

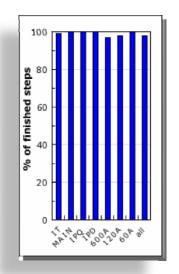
...but, all that glitters is not gold!!

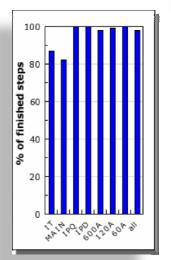
Any factors/strategies helped to reduce the time:


- More automated and powerful SW tools
- Many circuits had been already commissioned in 2008 (few (~4%) less test steps to be performed)
- □ Energy level reduced to 1.18TeV for RB, RQD/F
- □ Energy level reduced to 3.5TeV for IPQs, IPDs
- Nominal current lowered after 2-3 training quenches for 600A circuits (compatibly with the requirements for 3.5 TeV (actually commissioned to 5 TeV))
- Rationalization of the operational parameters for the 600 A circuits based on the 2008 experience
- Increased stability of cryogenic system

Some factors increased the time:

- A new system to be partially commissioned
- □ More complex procedures for the RB, RQD/F circuits
- More constraints in safety measures (no high current powering test even while working in the adjacent sectors)




EFFICIENCY

Number of successful test steps over total number of executed test steps

in spite of everything the total time for the commissioning globally dropped from 164 to 89 days!!

We want to do it better, then the question is:

How can this number be further reduced?

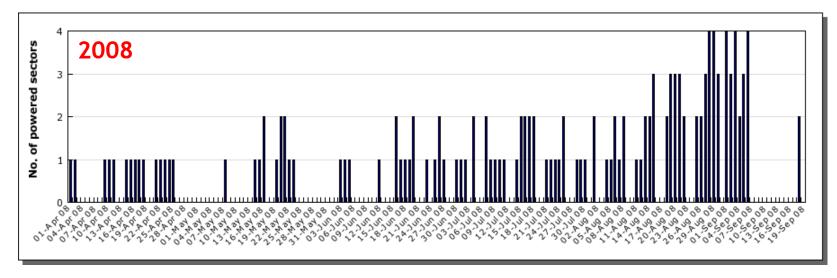
 1 - By reducing the number of tests to be executed (depending on the circuit history)

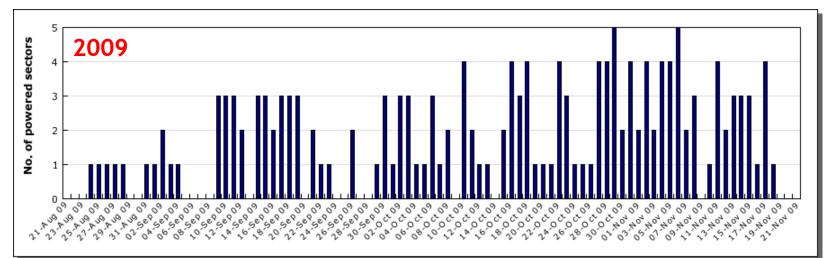
	S12	S23	S34	S45	S56	S67	S78	S81
wk 32	cool-							
wk 33	down						cool-	
wk 34	Elqa						down	
wk 35						cool-	Elqa	
wk 36	PT	cool-		Elqa		down		
wk 37		down					PT	cool-
wk 38	beam		cool-	PT				down
wk 39	operation		down		cool-	Elqa	beam	
wk 40		Elqa		beam	down		operation	
wk 41				operation		РТ		Elqa
wk 42		PT	Elqa					
wk 43					Elqa	beam		PT
wk 44		beam	PT			operation		
wk 45		operation			PT			beam
wk 46			beam					operation
wk 47				Cold Ch	eck-out			

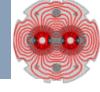
	S12	S23	S34	S45	S56	S67	S78	S81
wk 32	cool-						cool-	
wk 33	down			cool-			down	
wk 34	Elqa			down			down	
wk 35	PT					cool-	Elqa	
wk 36		cool-		Elqa		down	PT	
wk 37		down		PT				cool-
wk 38			cool-					down
wk 39			down		cool-	Elqa		
wk 40	beam	Elqa			down	PT		
wk 41	operation	PT		beam			beam	Elqa
wk 42	operation		Elqa	operation			operation	РТ
wk 43		beam	PT	operation	Elqa	beam		
wk 44			eann eration beam operation		PT	operation		beam
wk 45					beam			operation
wk 46			operation		operation			
wk 47		eeks		Cold Ch	eck-out			

in spite of everything the total time for the commissioning globally dropped from 164 to 89 days!!

We want to do it better, then the question is:

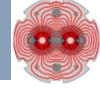

How can this number be further reduced?


- 1 By reducing the number of tests to be executed (depending on the circuit history)
- 2 By increasing the number of sectors to be commissioned in parallel



Number of sector powered per day

	S12	S23	S34	S45	S56	S67	S78	S81	
wk 32	cool-			cool-					
wk 33	down			down			cool-		
wk 34	EIQA						down		
wk 35		cool-				cool-	Elqa		
wk 36	РТ	down		ElQA		down			
wk 37							PT	cool-	
wk 38	beam		cool-	PT				down	
wk 39	operation	Elqa	down		cool-	Elqa	beam		3Wks
wk 40				beam	down		operation		
wk 41		PT		operation		PT		Elqa	
wk 42			Elqa						
wk 43		beam			Elqa	beam		PT	
wk 44		operation	PT			operation			
wk 45					РТ			beam	
wk 46			beam					operation	
wk 47				Cold Ch	eck-out				


We have to take into account that <u>as now</u>:

- ElQA cannot be performed in parallel due to resources problem
- Between 300-80K the cool-down cannot be carried out in parallel because of nitrogen delivery

	S12	S23	\$34	S45	S56	S67	S78	S81
wk 32								
wk 33								
wk 34	cool-	cool-	cool-	cool-	cool-	cool-	cool-	cool-
wk 35	down	down	down	down	down	down	down	down
wk 36								
wk 37								
wk 38	EIQA	EIQA	EIQA	EIQA	EIQA	EIQA	EIQA	EIQA
wk 39								
wk 40	PT	PT	PT	PT	PT	PT	PT	PT
wk 41								
wk 42								
wk 43	beam	beam	beam	beam	beam	beam	beam	beam
wk 44	operation							
wk 45	operation	operation	operation	operation	operation	operation	operation	operation
wk 46								
wk 47				Cold Ch	eck-out			

Obviously this is an ideal plan!!

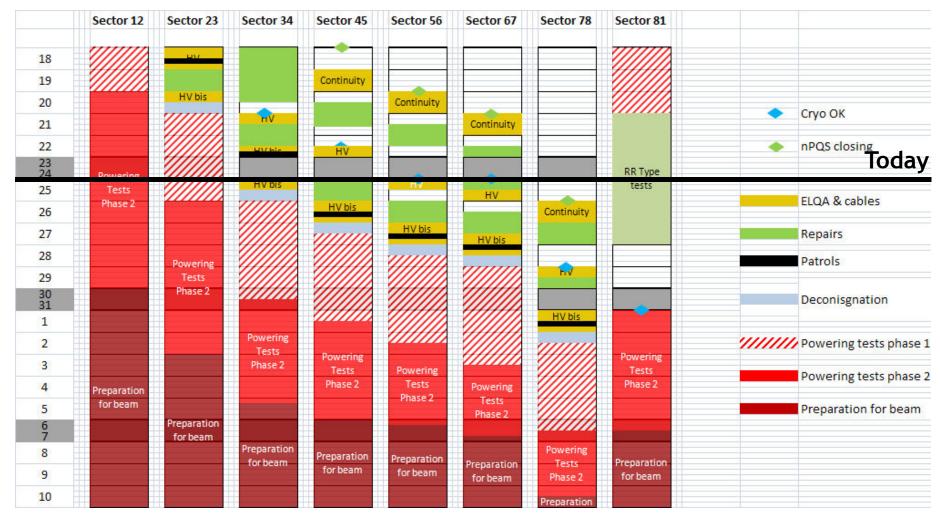
- Between 20-120K there is no problem (neither technical nor from resources) in having all sector cooled down at the same time
- Parallelization of cryo tuning (1-2wks) cannot be completely performed and it depends on the problems encountered
- Limited number of magnet protection experts (is the way we have done it acceptable as a regular scheme?)
- SW powering tools must be further developed (see Rudiger's)

Moving 3.5 TeV

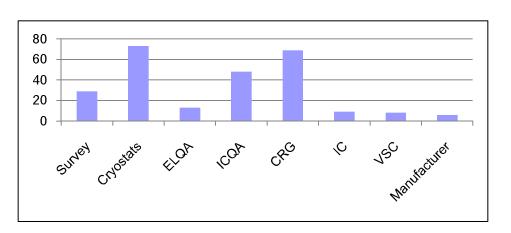
Actual status of QPS connectors repair

Actual EIQA validation

Sector	HV test	LV test
S12	ОК	OK (after repairs)
S23	3 connectors repaired - <mark>OK</mark>	OK (after repairs)
S34	2 connectors repaired - <mark>OK</mark>	ОК
S45	To be repeated (after repairs)	OK (after repairs)
S56	Not yet done	OK (after repairs)
S67	Not yet done	To be repeated (after repairs)
S78	Not yet done	To be repeated (after repairs)
S81	OK	OK (after repairs)


... thanks to EIQA and QPS teams!

3.5 TeV Commissioning planning


...thanks to K.Foraz

On week 38: 817 NCR's open (with different status and attached to magnets, interconnections, cryogenic system, vacuum etc...)

Closed NCs	
Cryomagnet	562
Survey	29
Cryostats	73
EIQA	13
ICQA	48
CRG	69
IC	9
VSC	8
Manufacturer	6

35 planned to be repaired on the next shutdown (not critical to go to 5TeV)

...a special thanks to A.Musso and M.Modena for the huge work done!

Not yet commissioned circuits

Circuit	Status
RU.L4	Powered up to 400 A, full commissioning procedure needed
RU.R4	Cryogenic problem solved
RCBXH3.L5	FPA problem under investigation
RCO.A78B2	Non-conform (Chamonix 2009): high R may be in a magnet or in the busbar
RCO.A81B1	Ready to be commissioned
RCO.A81B2	Open circuit, cannot be used
RQS.R3B1	Non existing
RCBH31.R7B1	ElQA issue (too resistive)
RCBCHS5.L8B1	Warm magnet instead
RCBCV10.R4B2	Resistance at the limit, PNO.a1 to be repeated
RCBYV5.L4B2	Non-training quench around 63 A. I_PNO could be reduced
RCOSX3.L1	ElQA non conformity
RCSSX3.L1	Several trips at 63 A. Analysis ongoing
RCBXHs	Known problem with operation parameters
RQTDs - RQTFs	Many trips - under investigation

□ 1.18 TeV commissioning in 2009 done very well

- □ 54% days compared with 2008 campaign
- □ 88% shifts compared with 2008 campaign
- Increased capability of parallel commissioning

Room for improvements

- Test procedures to be reviewed in case of sector left floating (adapted to the history of the sector)
- A more careful study of the possibility of parallelization should be done
- □ 3.5TeV commissioning is on time
 - Connectors repair quick and well done
 - In spite of some problems found, ElQA is proceeding fast and keeping the schedule

Thanks to all teams involved in the HWC...

A special thanks to:

- The HWC coordination team for help and discussions
- A.Musso and M.Modena for analyzing and closing a huge number of NCs
 - J.Szkutnik for graphs and analysis tools