

Hardware Challenges and Limitations for the IR Upgrades

Stephan Russenschuck

for the (EU) WP-5 and WP-6 teams [LHC IR Phase-I Upgrade WP-4, WP-5] MQXC, Cryostats, and Corrector package

28.01.2010

- ➔ Framework: EU-WP6 and White-Paper
 - Deliverables and Milestones
- ➔ Design and construction activities/challenges
 - Challenges (Heat load, powering and protection, axial forces, collaring)
 - New features (Porous cable and ground-plane insulation, tuning shims)
 - Integrated design process (quench simulation, end-spacer design)
- → Planning issues (How much R&D)

Low-β Quadrupole MQXC

→	Coil aperture	120 mm
•	Gradient	127 T/m
≯	Operating temp	1.9 K
≯	Current	13.8 kA
≯	WP on load-line	85%
∢	Inductance	5.2 mH/m
≯	Yoke ID	260 mm
∢	Yoke OD	550 mm
∢	Magnetic length	9160 mm (Q1,Q3
		7760 mm (Q2)

- LHC cables 01 and 02
- > Porous cable polyimide insulation
- Yoke OD identical to MB
- Self-supporting collars
- Single piece yoke
- → Welded-shell cold mass

EU-FP7 and Accord-Technique (F)

Year	Q	Deliverables	Milestones	Accord- Technique
2008	4		Component qualification (6.1)	
	1		Basic magnetic design (6.2)	
2009	2	Basic MQXC design (6.1.1)		Cryostat proto. design review
	3		Coldmass design (6.3)	
	4	Model construction (6.2.1)	Cryomagnet design (6.4)	Cryostat proto. production review Cryostat f. corrector package design review Corrector magnet design Cold-bore tube tech. spec.
	1			Cryostat f. corrector package production readiness review Quench heater tech. spec. Collars for MQXC tech spec.
2010	2	Model cold-test and design assesment (6.2.2)		
	3	Corrector package construction (6.3.1)		
	4	Prototype construction (6.3.2)	Corrector package cold- test (6.7) MQXC ELQA (6.6)	Cryostat prototype tooling installation Cryostat component delivery Corrector magnet series production start First quench-heater delivery Collar delivery for MQXC
	1	MQXC prototype cold-test (6.3.3)		Cryostat f. corrector package ready
2011	2	Complete IR design (6.3.4)		
	3			
	4			All corrector magnets delivered

EU-FP7 and Accord-Technique (F)

Year	Q	Deliverables	Milestones	Accord- Technique
2008	4		Component qualification (6.1)	
2009	1-4		Basic magnet design (6.2)	
	1	Basic MQXC design (6.1.1)		
2010	2			Cryostat proto. design review
	3		Coldmass design (6.3)	
	4	Model construction (6.2.1)	Cryomagnet design (6.4)	Cryostat proto. production review Cryostat f. corrector package design review Corrector magnet design Cold-bore tube tech. spec.
	1			Cryostat f. corrector package production readiness review Quench heater tech. spec. Collars for MQXC tech spec.
2011	2	Model cold-test and design assesment (6.2.2)		
	3	Corrector package construction (6.3.1)		
	4	Prototype construction (6.3.2)	Corrector package cold- test (6.7) MQXC ELQA (6.6)	Cryostat prototype tooling installation Cryostat component delivery Corrector magnet series production start First quench-heater delivery Collar delivery for MQXC
	1	MQXC prototype cold-test (6.3.3)		Cryostat f. corrector package ready
2012	2	Complete IR design (6.3.4)		
	3			
	4			All corrector magnets delivered

EU-FP7 and Accord-Technique (F)

Year	Q	Deliverables	Milestones	Accord- Technique
	1	Basic MQXC design (6.1.1)		Parameters fixed for all correctors (except for orbit correctors in Q2)
2010	2	All drawings (magnet, instrumentation and tooling)		
	3	All tooling (winding, curing, collaring, lifting, assembly, coil finishing, yoking) All components Coil measurements	Coldmass design (6.3)	
	4	Model construction (6.2.1)	Cryomagnet design (6.4)	Cryostat f. corrector package design review Corrector magnet design
	1	Test in vertical cryostat Integration in horizontal cryostat, test-bench preparation, cycling, field measurements		Cryostat f. corrector package production readiness review Quench heater tech. spec. Collars for MQXC tech spec.
2011	2	Model cold-test and design assesment (6.2.2)		
	3	Corrector package construction (6.3.1)		
	4	Prototype construction (6.3.2)	Corrector package cold- test (6.7) MQXC ELQA (6.6)	Corrector magnet series production start First quench-heater delivery Collar delivery for MQXC
	1	MQXC prototype cold-test (6.3.3)		Cryostat f. corrector package ready
2012	2	Complete IR design (6.3.4)		
	3			
	4			All corrector magnets delivered

Components	Tooling	Assembly	Tests/Studies
Concept design	Concept design	Started	
Drawing	Drawing	Finished	
Specifications	Manufacture		
Prototype	Installation		
(Series) manufacture			
Coil (50%)	Coil winding mandrel (20%)	Insulate and cut wedges	Arch curing tests
End-spacers (80%)	Curing mold assembly (50%)	Cure and measure coil packs	Arch E-modulus test
Ramp and splice box (50%)	Collar pack assembly tooling (0%)	Calculate best position of coils	Cold test 150 mm model
Copper wedges (100%)	Assembly for collar packs on coil (100%)	Assemble collar packs	
Quench heaters (80%)	Multipurpose test press (Hydraulics) (100%)	Assemble 150 mm model	Quench heater discharge
Wiring diagrams (0%)	Collaring press horizontal (100%)		Quench heater high-pot
Capacitance gauges (100%)	Auxiliary tooling for collaring press (50%)	Insulate cable	Connection box
Strain gauges (100%)	Ground insulation former (0%)	Insulate Cu wedges	
Spot heaters (0%)	Layer jump and splice former (0%)	Coil winding	ELQA 1 After collaring
Head shims (0%)	E-mod size press (straight section) (80%)	Coil curing	ELQA 2 After joking
Collars (Instrumented) (100%)	E-mod size press (end section) (0%)	Coil size measurements	
Collar (Non-instrumented) (0%)	Steel dummy coils (straight section)	Collaring	Warm magnetic field meas. 1
Collar (Punched) (0%)	Steel dummy coils (end section)	Mechanical measurements	Warm magnetic field meas. 2
Collaring shoe (100%)	Collapsible mandrel for apert. assemb.	Warm magnetic field	
Collaring keys (100%)	(short)	measurements	Cold test in vertical cryostat:
Ground insulation (50%)	Collar rectification table	Mount end flanges	Field quality
Pole turn fishbones (60%)	Longitudinal compaction press	Solder electrical joints	Quench behavior
Outer layer fish-bone (60%)	Lifting tooling	Yoke assembly	
Yoke laminations (Wire, punched) (100%)	Quench heater fabrication tooling Soldered joint tooling	Warm magnetic field measurements	Cold test in horizontal cryostat Dump
Yoking tie rods and nut assembly (0%)			Quench heater delay
Aperture end plate components (0%)			
Joint box components (0%)			nnn Field quelity
Yoke end plates (0%)			Dynamic effects
Main assembly drawing (20%)			Dynamic enects
Instrumentation feedthrough system			
Helium vessel			
End-domes			

Stephan Russenschuck, CERN TE-MCS, 1211 Geneva 23

170

1996_asc_Design.pdf
 1998_asc_Model_test.pdf
 1998_epac_TUP20G.pdf
 1999_mt16_00828194.pdf
 1999_mt16_Mech_tolerance.pdf
 2000_asc_5Model_comp..pdf
 2000_asc_00920090.pdf
 2000_asc_00920094.pdf
 2001_mt17_01018377.pdf
 2001_mt17_01018386.pdf
 2001_mt17_Prototype_testing.pdf
 2002_asc_01211840.pdf

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 7, NO. 2, JUNE 1997

Design Study of a Superconducting Insertion Quadrupole Magnet for the Large Hadron Collider

A. Yamamoto, K. Tsuchiya, N. Higashi, T. Nakamoto T. Ogitsu, N. Ohuchi, T. Shintomi, and A. Terashima National Laboratory for High Energy Physics (KEK), Tsukuba, Ibaraki, 305, Japan

> G. Kirby*, R. Ostojic, and T. M. Taylor European Laboratory for Particle Physics (CERN), 23 Geneve, CH-1211, Switzerland

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 9, NO. 2, JUNE 1999

Quench and Mechanical Behavior of an LHC Low-B Quadrupole Model

T. Nakamoto, K. Tanaka, A. Yamamoto, K. Tsuchiya, E. Burkhardt, N. Higashi, N. Kimura, T. Ogitsu, N. Ohuchi, K. Sasaki,[†] T. Shintomi, and A. Terashima, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

G. A. Kirby, R. Ostojic, and T. M. Taylor European Laboratory for Particle Physics (CERN), 1211 Geneva 23, Switzerland

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 12, NO. 1, MARCH 2002

Quench Protection Study of a Prototype for the LHC Low-Beta Quadrupole Magnets

Tatsushi Nakamoto, Earle E. Burkhardt, Toru Ogitsu, Akira Yamamoto, Takakazu Shintomi, and Kiyosumi Tsuchiya

5 Models built (revision of inner layer)

years

S

Field Measurement of a Fermilab-Built Full Scale Prototype Quadrupole Magnet for the LHC Interaction Regions

R. Bossert, R. Carcagno, J. DiMarco, S. Feher, H. Glass, J. Kerby, M. J. Lamm, A. Nobrega, T. Nicol, T. Ogitsu, D. Orris, T. Page, R. Rabehl, G. Sabbi, P. Schlabach, J. Strait, C. Sylvester, M. Tartaglia, J. C. Tompkins, G. Velev, and A. V. Zlobin

DESIGN OF A HIGH GRADIENT QUADRUPOLE FOR THE LHC INTERACTION REGIONS

R. Bossert, S.A. Gourlay, T. Heger, Y. Huang, J. Kerby, M.J. Lamm, P.J. Limon, P.O. Mazur, F. Nobrega, J.P. Ozelis, G. Sabbi, J. Strait, A.V. Zlobin Fermilab, Batavia, Illinois, USA;

S. Caspi, D. Dell'orco, A.D. McInturff, R. M. Scanlan, J.M. Van Oort Lawrence Berkeley National Laboratory, Berkeley, California, USA;

R.C. Gupta, Brookhaven National Laboratory, Upton, New York, USA

JEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 9, NO. 2, JUNE 1999

Design, Development and Test of 2m Quadrupole Model Magnets for the LHC Inner Triplet

J. Kerby, A.V. Zlobin, R. Bossert, J. Brandt, J. Carson, D. Chichili, J. Dimarco, S. Feher, M.J. Lamm, P.J. Limon, A. Makarov, F. Nobrega, I. Novitski, D. Orris, J.P. Ozelis, B. Robotham, G. Sabbi, P. Schlabach, J.B. Strait, M. Tartaglia, J.C. Tompkins, Fermi National Accelerator Laboratory, Batavia, Illinois, USA

> S. Caspi, A.D. McInturff, R. Scanlan, Lawrence Berkeley National Laboratory, Berkeley, California, USA

TABLE V

Quench current and b_6 as a function of coil curing cycle

	coil curing cycle		I_c	$\Delta b_6, 6kA$
	temperature	pressure	300 A/s	40 A/s
HGQ01	135°	low	10965	0.02
HGQ02	190°	low	11335	0.21
HGQ03	195°	low	11298	0.16
HGQ05	130°	low	10519	0.12
HGQ06	190°	high	6433	-1.04
HGQ07	190°	high	4487	-0.55
HGQ08	190°	high	3941	-0.72
HGQ09	190/135°	low/high	12946	0.13

9 Models (change of cables)

Pro

Contra

More advanced simulation tools

Integrated design and manufacture for endspacers

Faster link between CAD and FE modeling

More sophisticated CAD/CAM

Existing specifications

Cryostat identical to MB

Cable available

Large aperture

EU-Industrial suppliers

EU/White paper

Technical experience

In-house production

Heat load (porous insulation; coil modulus)

Busbar design and routing

Horizontal collaring (new press to be procured)

Magnet protection (nested PCs, heaters)

Axial forces

EU-Certification of tooling

Heat-Load and Cooling Requirements

Bayonet HX inner diameter at 7 m/s vapour velocity limit for a 52.9 m long IT+CP, as function of total power 105 100 95 Inner diameter (mm) 90 85 400 350 80 75 70 65 60 450 475 500 525 550 575 600 400 425 Power (W) Single HX ID (mm) — Double HX ID (mm) — (Calculated) Nominal Power Design (Installed) Power Lowest possible pressurized HeII bath temperature of inner triplets, attained by fully overflowing the bayonet heat exchanger 1900 $f^{1}\left(T\right)\left(W^{3}\,/\,cm^{5}\,K\right)$ 1.97 2 a1/10 1600 without return pumping line losses including return pumping line losses saturated 1.96 press urised 1400 1.95 1 1200 1.94 temperature (K) a5 1000 1.93 0 1.92 300 b6 1.91 600 -1 a3 1.9 400 1.89 200 -2 1.88 2000 12000 4000 6000 8000 10000 50 100 150 350 200 250 300 400 450 500 0 1.5 1.6 1.7 1.8 1.3 1.4 1.9 2 2.1 2.2 2.3 CURRENT (A) total heat load (W) Rob van Wee kleren, 19.01.2010 T (K)

Coil Layouts (4-Block / 6-Block)

12683 A, 78.45% on load-line

	4-block	6-block
Only outer layer: b_6	128.9	0.803
Only outer layer: b ₁₀	-4.99	0.202
Only inner layer: b_6	-115.7	-0.905
Only inner layer: b_{10}	4.48	-0.227

Stress (MPa) – insulation thickness (mm)

Improved Heat-Extraction (2: Porous Ground-Plane Insulation)

Conventional ground insulation

Open ground insulation

Quench Simulation (LHC MB)

Magnet Protection Study (Dump Resistor and Heaters)

Endspacer Design and Manufacture

Electrical Connection Scheme

Vertical Collaring (Hardly Possible for 10-m-long Magnets)

Horizontal Collaring

Self-locking collars

Collaring Press

Cable insulation

Re-Commissioning of Tooling in 927

Winding machine

Curing press

Modulus tester

Corrector Package

	Current	Integrated strength (field)	Aperture
$\mathbf{MCXB}\;(\mathbf{B}_1/\mathbf{A}_1)$	+/- 2.4 kA	1.5 Tm	140 mm
MQXS (A ₂)	+/- 2.4 kA	0.65 Tm @40 mm	140 mm
MCXT (B ₆)	+/- 120A	0.075 Tm @ 40 mm	140 mm
MCXO (B ₄)	+/- 120A	0.035 Tm @ 40 mm	140 mm
$MCXSO(A_4)$	+/- 120A	0.035 Tm @ 40 mm	140 mm
$MCXSS(A_3)$	+/- 120A	0.055 Tm @ 40 mm	140 mm
$MCXS(B_3)$	+/- 120A	0.055 Tm @ 40 mm	140 mm

New 4.37 mm cable & Polyimide insulation Self-supporting collars Single piece yoke

1.5 Tm
1.9 K
2.4 kA
10 mH

- Parameter list
- ➔ Magnetic and mechanical design
- Fabrication drawings
- → Trial coils
- Mechanical model
- Model magnets completed
- Technical specifications
- Industrial contracts
- Pre-series magnets
- Series production

October 09 / January 10 November 09 May 10 July 10 May 10 / July 10 December 10 March 11 July 11 July 12 September 12 / December 13

→ To reach the same level as the effective BPM resolution:

- Provide 1.5 Tm (1.8 Tm) in H&V-plane in BOTH locations.
- Feasibility study underway on combined H/V-corrector that meets the reliability requirements (Report by Mid-2010 + Model work..)
- ➔ An extra H/V pair means:
 - Magnet R&D, material R&D, design, component & tooling procurement
 - Additional powering and protections circuits

Planning (Only MQXC)

Collaboration Website

000	se-I Quadrupole (MQXC) and Cryostat	
< > C +	https://espace.cern.ch/MOXC/	Q- Google
MMM Services	nsors @ ISU LEO engl. LEO franz.	
LHC Upgrade Phase-I Quad	Irupole (MQXC) and Cryostat	
CERNIN		This Site 🛊
LHC	Upgrade Phase-I Quadrupole (MQXC) and Cryostat	
Home		
View All Site Content		
Documents		
Logbook	Welcome	- Announcements
Meetings Document Library	This collaboration site aims at facilitated communication between the different teams and engineers involved in the design, manufacture, and testing of the MQXC magnet for the LHC upgrade phase 1.	There are currently new announcement, o
Info		Add new annour
Calendar	How to use this homepage	•
Announcements	To request full access to this site, send your username to Stephan.Russenschuck@cern.ch. Outside-CERN collaborator are required to create a CEBN External Account here. You can subscribe to email alerts by clicking "Actions" in any of	s Calendar
Links	the following lists:	22/07/2009 09:00 AM
Contacts	 Logbook: Keep track of relevant information grouped by subproject, component, and activity. 	
People and Groups	 Meetings: Repository of meeting summaries and minutes. Document library: Project planning, specifications, project notes, and other documents. 	Add new event
C Recycle Bin		