# How to achieve satisfactory performance of the access system: stability, efficiency, operation, fluidity

Timo Hakulinen (GS/ASE)

Thanks:

LHC access team (GS/ASE), LHC operation (BE/OP)

LHC Performance Workshop
Chamonix 27.1.2010

### LHC access/safety system



### LHC access modes (From user's point of view)

- General (unsupervised automatic)
  - − 1: badge 2: enter PAD 3: iris scan 4: enter zone
  - Pre-approved authorization by person/zone
- Restricted / Patrol (operator controlled)
  - 1: call operators (intercom) 2: badge 3: take key 4: unlock PAD with key 5: enter PAD 6: iris scan 7: enter zone
  - Approved ADI in EDH
  - Ultimate responsibility with engineer in charge
- Closed / Veto (no access possible)
  - HW tests
  - In beam

### Goals of the access system

- Manage personnel access to controlled areas, safety system permitting
- General design goals:
  - Reliability (don't expose users, don't break beam)
  - Performance (for both users and operators)
  - Flexibility (allow change / reconfiguration)
  - Traceability / history / logging
  - Automate as much as possible
  - Offer best possible interface to manually carry out things that cannot (or should not) be automated

### Some access statistics (Total and controlled accesses)

- Aug 1, 2009 Jan 23, 2010:
  - Total accesses: 181893 (avg 1033 / day)
  - Restricted mode: 33676 (avg 191 / day)



# Some access statistics 2 (The busiest day)

- The busiest day for operators: 14.1.2010
  - Restricted mode accesses (keys taken): 670



# Some access statistics 3 (Waiting times)

- User waiting times from call to operators to access
  - Subjective estimates based on experience
  - Best case: < 1 min (no rush, ADI ok, system ok)</li>
  - Normal: 1 5 min (normal operator load)
  - Worst case: 30 min  $\infty$  (big rush, multiple access points at the same time, technical problems)

### A typical busy day (Synthesis of shifts on two separate days)

- Two single-operator shifts: 1<sup>st</sup> 7:30-12:30, 2<sup>nd</sup> 12:30-17:30
- Two peaks:
  - Early morning (8-9:30) and after lunch (13:30-15)
  - During a peak ~3-5 calls in the queue all the time
- Events:
  - Morning: 99 calls, ~170 accesses
  - Afternoon: 3 patrols, 97 calls, ~210 accesses
  - Average 2 persons / call, max. 16 persons / call
  - 1 system problem requiring operator intervention (user could not exit a zone, access maintenance intervention required)
  - 1 hardware problem (maintenance intervention required)
- Normal procedure:
  - 1: user calls and gives ADI 2: operator checks ADI in EDH 3: operator gives key to user 4: user enters zone
  - Repeat until all users passed
- Experienced operator performance: ~1 min / call

### Issues affecting access performance

#### Technical malfunctions

- Hardware problems (contacts, key distribution, relays)
- Software problems (video, biometry) mainly in the parts specific to CERN
- External factors (network /routers, Oracle service, HR DB, human interventions)

#### 2. Shortcomings of the system design

- Protocol: Access-devices servers DB Op-post (performance bottlenecks identified)
- LACS operator interface (scaling limitations, speed)
- Key distribution (bottleneck at access points while in restricted mode
   operator has to follow each access)

#### 3. Administrative issues

- Inflexible ADI mechanism (EDH)
- Scheduling conflicts

# What can be done technically (1: Technical malfunctions)

#### Hardware problems

- Rigorous preventive maintenance program ongoing (example: campaign to change PAD position contacts in 2009)
- Redesigned video architecture (new recorders and software)
- Improved hardware monitoring (proactively analyze, anticipate, and address problems)

#### Software problems

- Correctives by the vendor
- Workarounds by the CERN team
- Biometry subsystem (simplify architecture: biometry on badge)
- Improved software monitoring

#### External factors

- Collaboration with the respective services
  - Example: Analyze with IT network problems, which strongly affected LACS and other systems over the last few months – turned out to be a faulty router
- Improved monitoring (again)

### What can be done technically (2: Shortcomings of the system design)

- Protocol: Access-point servers DB Op-post
  - Fundamental system feature cannot be modified at will
  - Optimization of the server processes
  - Make sure that network and database always in good shape
- LACS operator interface (long time operator request)
  - Streamlined standard interface (limited approach)
  - Go towards standard Evolynx-software (take out CERN specifics as much as possible – allows to follow standard SW releases)
  - A special-purpose high-performance interface without generic overhead for access-operation only facilitating management of multiple access points (development project)
- Key distribution
  - Separate the key distribution phase from access entry cycle (operator gives out all keys of a group and lets them pass through access point at their own pace)

# What can be done technically (3: Administrative issues)

- Inflexible ADI mechanism
  - First: decide what the future "ADI" mechanism will look like (primarily operational business, with input from access team) – The proposed AET mechanism (see Julie's talk)
  - Possibility for better integration of this information into the access interface for restricted mode:
    - When user badges, check and show (all) valid AETs for the access point
    - Requires enforcement
  - A new [partial] access mode (examples):
    - General mode with AET (automatic, cannot treat exceptions)
    - General mode with operator confirmation (with AET, supervised without key)
    - In any case, only in LACS; LASS will not be modified
- Scheduling conflicts
  - Mostly out of scope for access/safety system
  - Improvement possible with the new AET mechanism

# Priorities and timetables (Best estimates at this time)

| Task                                                            | Delay<br>(within) | Complexity                 | Cost   |
|-----------------------------------------------------------------|-------------------|----------------------------|--------|
| AET integration (access system side only)                       | 6 months          | Fairly simple SW           | > 10k  |
| Redesign of operator interface (dedicated to access operations) | 1 year            | Somewhat complex SW        | > 10k  |
| Decouple key distribution from access cycle                     | 1 year            | Somewhat complex SW and HW | > 100k |
| Biometry on badge                                               | 2 years           | Somewhat complex SW and HW | > 100k |
| New access modes (General with operator,)                       | 2 years           | Complex SW and HW          | > 100k |
| New video architecture                                          | 3 years           | Subsystem redesign         | > 100k |

### Conclusions

- Heavy utilization of the LHC access/safety system has uncovered shortcomings, which have been analyzed
- To achieve a better performance from the point of view of users and operators, both technical and administrative issues need to be addressed
- Several technical improvements possible (go with the easiest and most effective first)
- Lessons learned are being applied in the design of the future access/safety system upgrades (PS, SPS)

### Thank You