

Review of Critical Radiation Areas for LHC Electronics and Mitigation Actions Radiation Monitoring and First Results Session 6 - 27th January 2010

Chamonix 2010"

January 27th

Radiation 2 Electronics

!! Many Thanks To Everybody !!! R2E Study Group www.cern.ch/r2e

Monitoring – "Benchmarking" – Early Operation :

Experience from Commissioning

Overview

- **Calibration** of RadMons and Benchmarks
- The LHC Radiation Environment

(Quick!) Review of Radiation Levels:

- Some examples of new FLUKA Calculations
- Summary as a function of 'LHC-Operation'
- Criticality List

Mitigation Options:

- How much can we do with Shielding ('Simple' and 'Complex')
- Where is **Relocation** required
 - Early Relocation
 - Complete Relocation
- What Other Options do we have (Civil Engineering, SCL)

What do we have to do more?

What is critical when?

What can we do about it?

Monitoring & Benchmark

Some Parts in Short

RadMon Improvements

- Refined Calibration (benchmark experiments, dedicated tests,...)
- **Relocation** of detectors to allow for better early measurements
- The LHC Radiation Environment
- Change of Voltage Settings
- New RadMon Developments (e.g., Battery Driven Version)

Inventory & Additional Monitoring

- Through Point-Iterations monitor locations were checked & documented -> visualisation tool suggested (to be developed)
- more than 200 TLD detectors placed around critical areas
- will allow for an early analysis at even low-intensities
- we will start collecting them in late-summer

Combined Monitoring Tool (see link):

- Beta-Release of Combined Monitoring Tool
- Allows for quick analysis of various detector types
- Extensively used during early operation
- Not only useful for R2E purposes

Radiation Physics/Effects/Monitoring

Reality Is Complicated (e.g., UJ76)

Having a look in literature

DEVICE SEU CROSS SECTIONS, FROM THERMAL AND HIGH ENERGY NEUTRONS, CURRENT MEASUREMENTS

	Туре	Vendor	DC/	Hi E SEU X-	Therm SEU	Ratio-SEU,
Part			Feat Size	Sec, cm ² /bit§	X-Sec, cm ² /bit	Therm/ Hi E
S-1	SRAM	VS-1	0446/0.15µ	2.1×10 ⁻¹⁴	3.3×10 ⁻¹⁶	1.6×10 ⁻²
S-2	SRAM	VS-1	0446/0.15µ	7.9×10 ⁻¹⁵	1.7×10 ⁻¹⁹	2.2×10 ⁻⁵
D-1	DRAM	VD-1	0446/0.15µ	6.4×10 ⁻¹⁷ *	1.3×10 ⁻¹⁵	20
D-2	DRAM	VD-1	0422/0.13µ	2.95×10 ⁻¹⁶ *	1.18×10 ⁻¹⁶	0.4
P-1	μprocess	VP-1	0240/0.18µ	1.5×10 ⁻¹⁴	2.2×10 ⁻¹⁷	1.5×10 ⁻³
P-2	µcont.	VP-2	0439/0.13µ	1.02×10 ⁻³ †	1.68×10 ⁻⁵ †	1.7×10 ⁻²
P-3	µcont.	VP-2	0532/0.15µ	6.99×10 ⁻⁴ †	6.03×10 ⁻⁶ †	8.6×10 ⁻³
P-4	μcont.	VP-2	0341/0.18µ	1.54×10 ⁻⁴ †	1.34×10 ⁻⁵ †	8.7×10 ⁻²
P-5	μprocess	VP-3	0311/0.18µ	1.3×10 ⁻¹⁵	No upsets	0

† In units of Upset/dev-hr;

IEEE Trans. on Nucl. Sci., Vol 5, p. 3587-3595

* No actual upset detected; cross section based on 1 assumed upset § E> 10 MeV

Sensitivity ranges over four order of magnitudes

- Some: similar or larger xSection
 - Others: a factor of 10-100 or further below

□ How does is compare to our particle energy spectra?

What's about the Critical Areas

Chamonix 2010: January 27th

The Risk of Low-Energy Neutrons

The Risk of low-energy neutrons can't be excluded

- @ after shielding and with similar cross-sections dominant
- e significant contribution even with a cross-section of a factor of 10-100 less
- Important criteria for shielding and relocation approaches
- Only preliminarily studied so far (main concern to reduce the high-energy hadron fluence – still helps for low energy neutrons)
- Oifferent shielding strategies (Boron, ...)

@ Risk:

- Important for old components possibly containing borated glass
- e also not to be excluded for new COTS, etc...

Do we have Early Measurements?

WIC Failure during TI8 Injection Test

- WIC failure observed in June (stopped CNGS and LHC Injection)
- Immediate analysis of available measurement data
- □ FLUKA simulations: respective radiation levels (10⁸-10⁹cm⁻²)
- Detailed review of WIC layout and available test measurements
- Analysis confirmed that the failure was very unlikely
- During the additional TI2/8 test about 4x10¹³ protons were 'dumped' on the upstream collimator -> no WIC failure observed

W UJ87: setup of TCDIH.87904

CERN

TCDQ Losses 07-09.11.2009

Chamonix 2010: January 27th

Session 6 - Radiation To Electronics: R2E Summary

TCDQ Losses 07-09.11.2009

High energy (>20MeV) hadron fluence for (2.6+0.74)E13 protons/year

- ~ $3x10^{10}$ cm⁻² high-E hadrons for 7TeV and 2.6x10¹³
- rough scaling: ~2x10⁹ cm⁻² at 450GeV
- this results in $\sim 4x10^5$ per $5x10^9$ shot
- **Thanks Brennan!** We had about 50 (full) shots on the TCDQ -> ~2x10⁷ expected
- 5.6x10⁷ measured at the tunnel location (~30counts!)
- In the UA, the monitor is set to 3V (factor of 10 more sensitive) -> nothing measured -> confirms the expected attenuation factor of ~1000

Early Monitoring - Important Analysis

a long table -> don't try reading © E. Lebbos

- Continuous analysis of monitor readings helps verifying simulation predictions as well as identifying additional weak-points (in case)
- A draft table of possible loss-cases (intended losses for R2E purposes) was developed and is in iteration with operation (R. Assmann, B. Goddard)
- Coming months will be particularly important and time and effort is required for a dedicated R2E analysis

!!! HELP NEEDED !!!

Image Image <th< th=""><th></th><th></th><th></th><th><u> </u></th><th></th><th></th><th></th><th></th><th><u>.</u></th><th>$\overline{\mathbf{N}}$</th><th></th><th>)</th></th<>				<u> </u>					<u>.</u>	$\overline{\mathbf{N}}$)
Figure 1 2555.00 11.0075 300.44.11.0015 900.46 900.46 900.477 0.022/n.h. B13.2 2555.00 1.0015 300.40 1.0015 0.001 0.003 0.003 0.003 0.003/n.h. 0.003/n.h. B17.1 145.00 1.00075 SMA.UXIS.1E075 900.46 92 1 1.007-0 0.032/n.h. B17.1 145.00 1.00075 SMA.UXIS.1E075 900.46 92 5 0.017-0 0.032/n.h. B17.1 145.00 1.00155 SMA.UXIS.1E075 900.46 92 5 0.017-0 0.057/n.h. B17.1 240.00 1.00165 SMA.UXIS.1E075 900.46 97 0.84767 0.037/n.005 U22 3045.00 YE 2.00055 SMA.UXIS.2210.005 900.40 97 2.6 2.206-07 0.037/n.013 U22 3045.00 YE 2.10005 SMA.UXIS.21005 900.40 97 2.6 2.206-07 0.037/n.013 U22 3045.00 <	Location	Area	Deum [m]	Critical Area	RadMon Ident. Nb	Localization (SIMA)	RadFET 1/2	SEU sens	Counts	Fluence hadrons [cm ⁻²]	Dose [Gy]	Neutro eq. 1 M
Figure 26516.00 11/11/18 300-40 90 55 1.108-68 0.03/k.h. 1000 0.00 1.80075 30.40.41.10.1015 0.000 0.021/h.h. 0.021/h.h. 1017 145.00 1.80075 50.40175 400 vie 90 25 5.008-07 0.032/h.h. 1017 145.00 1.80075 50.40175 400 vie 90 1.814.00 6.0090/h.h.		RI132	26516.00		1LM07S	SIMA.4L1.1LM07S	400/ 100	5V	48	9.60E+07	0.022/n.k.	Neutring Neutring 1 5 -
LUGS 0.00 180275 SMALUGS.BEO27 mmode yu 1 1.087-66 0.021,063 B1271 14.500 15M0075 SMALUGS.BEO275 mmode yu 5 5.004-07 0.032,06.3 B1271 14.500 15M0075 SMALARI.BMOTS wu 59 1.187-66 0.032,06.1 B1271 224.00 15M005 SMALARI.BMOTS wu 59 1.187-66 0.032,06.1 B1271 224.00 15M005 SMALARI.BMOTS wu 59 1.867-66 0.027,06.0 B1271 224.00 15M005 SMALU22.21M065 990-40 59 7 1.406+07 0.079,00.0 U22 3045.00 YE5 21M065 SMALU22.21M065 990-40 59 2.50 5.024+08 0.079,00.01 U23 13.88.81 YE5 21M065 SMALU22.21M065 990-40 59 2 4.004+06 0.007,00.01 U23 13.88.81 YE5 21M065 SMALU22.21M055 990-40		RI132	26516.00		1LM185	SIMA.4L1.1LM18S	dep/ dep	5∨	55	1.10E+08	0.028/n.k.	
BIT 11:50 11:MOS SMA.4R.1:MOS 900 90 2.5 5.007-07 0.002/c.h. BIT 14:500 1.18MOS SMA.4R.1:MOS 900 90 18:400 0.0000/c.h. BIT 12:00 1.18MOS SMA.4R.1:MOS 900 90 1.87.400 0.0056/c.h. BIT 24:00 1.18MOS SMA.4R.1:MOS 900 90 1.87.400 0.0556/c.h. BIT 24:00 1.18MOS SMA.4R.1:MOS 900 8.47.405 0.0379/c.001 UU22 303.4.21 YE 2.18MOS SMA.41.22.21MOS 900 8.47 0.5024-08 0.070.047 UU22 304.50 YE 2.1MOS SMA.U22.21MOS 900 9.4 2.6 2.2024-07 0.009/c0.01 UU2 304.50 YE 2.1MOS SMA.41.21MOS 900 9.4 2 4.0024-06 0.007/c0.037 UU2 304.50 YE 2.1MOS SMA.41.21MOS 900 9.4 2 1.066.40	POINT 2 POINT 1	UX15	0.00		1RE07S	SIMA.UX15.1RE07S	1000/ 400	3V	1	1.69E+06	0.021/0.053	
Q BI71 14.60 1 MINDS SMA.481.34M15 900 000 000 0000 900 0000 900 0000 1188-06 0.000000000 BI71 224.00 1 MIMDS SMA.481.13M105 900 000 90 90 7 3.040-00 0.055/n.k. BI71 224.00 1 MIMDS SMA.481.11M145 900 000 90 7 3.040-00 0.055/n.k. BI71 JLL 247.60 1 MIMDS SMA.481.11M145 900 000 90 0 6.478-05 0.0370.000 U22 3004.20 YES ZIM005 SIMA.UI22.21M065 300 00 90 251 5.028-08 0.077(0.047 U23 13.80 YES ZIM005 SIMA.UI22.21M055 300 00 90 2 4.000+06 0.007(0.031 U23 13.88.3 YES ZIM005 SIMA.UI22.21M055 300 00 90 2 4.000+06 0.007(0.031 U23 13.88.83 YES ZIM005 SIMA.UI22.21M055 900 2 4.000+06 0.007/0.031 U23 13.8		RI171	145.00		1RM075	SIMA.4R1.1RM07S	400/ 100	5V	25	5.00E+07	0.032/n.k.	
EDD 127.1 22.00 1 MIMAS SMA.REI.18MIAS 400 00 90 17 3.405-07 0.055/h.k. U122 247.60 1 MIMAS SMA.REI.18MIAS 500 00 8.476-05 0.015/h.k. U122 3045.00 YE 21,0605 SIMA.LILLAS 500 00 8.7 1.405-07 0.378/h.00 U122 3045.00 YE 21,0605 SIMA.U122.21,0405 500 00 8.7 7 1.405-07 0.378/h.0123 U122 3045.00 YE 21,0605 SIMA.U122.21,0405 500 00 8.7 2.5 5.024-08 0.07/h.047 U123 13.60 YE 21,0005 SIMA.U122.21,0005 500 00 9.7 2.6 2.205-07 0.009/h.031 U123 13.60 YE 21,0005 SIMA.U122.21,0005 500 9.7 2 4.005-66 0.007/h.053 U123 13.80 YE 21,0005 SIMA.U122.21,0005 500 9.7 2 1.664-60 0.007/h.053 U127 </td <td>8</td> <td>RI171</td> <td>145.00</td> <td></td> <td>1RM195</td> <td>SIMA.4R1.1RM195</td> <td>1000/400</td> <td>5∨</td> <td>59</td> <td>1.18E+08</td> <td>0.0090/0.015</td> <td></td>	8	RI171	145.00		1RM195	SIMA.4R1.1RM195	1000/400	5∨	59	1.18E+08	0.0090/0.015	
BitZ/BitZ 247.69 11MI45 SMA-R3.1.1MI45 999-00 97 0 8.47E-05 0.0130.00 ul22 302.421 Yt5 ZIM05 SIMA.UI22.2IM065 999 0 8.47E-05 0.0139.0.00 ul22 3024.21 Yt5 ZIM05 SIMA.UI22.2IM065 999 0 8.47E-05 0.0179/0.123 ul23 3045.00 Yt5 ZIM05 SIMA.UI22.2IM055 999 97 2.6 2.206-07 0.07/0.047 RA3 3188.33 Yt5 ZIM05 SIMA.UI23.2IM055 997 2.6 2.206-07 0.07/0.051 U/33 139.90 Yt5 ZIM05 SIMA.UI23.2IM055 997 2 1.667-66 0.07/0.051 U/34 139.90 Yt5 ZIM055 SIMA.UI23.2IM055 997 2 1.667-66 0.007/0.051 28/9/A27 3391.0 2 ZIM055 SIMA.UI23.2IM055 996 2 1.667-66 0.007/0.051 28/9/270 2 ZIM055 SIMA.LI23.2IM055<		RI171	224.00		1RM105	SIMA.6R1.1RM10S	400/ 100	5∨	17	3.40E+07	0.055/n.k.	
UD2 302.4.21 VIS ZLM065 SIMA.U22.2LM068 300-40 P/ 7 LA0E-07 0.378/0.123 UD2 3045.00 VIS ZLM055 SIMA.U22.2LM068 300-40 P/ 251 5.021-68 0.070.007 UD2 3045.00 VIS ZLM055 SIMA.U22.2LM055 300-40 P/ 251 5.021-68 0.070.007 UD2 3045.00 VIS ZLM055 SIMA.U22.2LM055 300-40 P/ 26 2.205-07 0.099/0.031 UL2 138.80 VIS ZLM055 SIMA.U22.2LM055 800-40 P/ 2 4.005-66 0.007/0.035 UL7 139.90 Z2M055 SIMA.U22.2LM055 SIMA.U22.2LM055 800-40 P/ 2 1.667-66 0.007/0.035 28 397.00 ZM055 SIMA.U22.2LM055 SIMA.U22.2LM055 90-02 2 1.667-66 0.007/0.035 28 492.00 ZM055 SIMA.U22.2LM055 SIMA.U22.2LM055 90-02 1 8.476-65		RI12/RR17	247.69		1LM14S	SIMA.8L1.1LM14S	1000/400	5∨	0	8.47E+05	0.019/0.00	
UD2 S08.500 YES ZLMOSS SIMA-UD2-ZLMOSS SUB - B S2 LS.024-08 0.07/0.047 U03 13.60 YES ZLMOSS SIMA-UD2-ZLMOSS SUB - B 26 2.264-08 0.07/0.047 U03 13.60 YES ZLMOSS SIMA-UD2-ZLMOSS SUB - B 26 2.264-02 0.009/0.031 U03 13.80.83 YES ZLMOSS SIMA-UD2-ZLMOSS SUB - B 2 4.065-66 0.094/n.k. U037 13.98.09 YES ZLMOSS SIMA-UD2-ZLMOSS SUB - B 2 1.087-66 0.017/0.35 U377-73 33930 ZMMDSS SIMA-UD2-ZLMOSS SUB - B 2 1.087-66 0.017/0.31 U377-73 33930 ZMMDSS SIMA-UD2-ZLMOSS SUB - B 2 1.087-66 0.017/0.31 U378-77 238700 ZMMDSS SIMA-UD2-ZLMOSS SUB - B 2 1.087-66 0.017/0.31 U28 4040.00 ZMMDSS SIMA-UD2-ZLMOSS SUB - B 2	POINT 2	UJ22	3024.21	YES	2LM06S	SIMA.UJ22.2LM06S	1000/ 400	5∨	7	1.40E+07	0.178/0.123	
UI23 113.60 YE 21.0045 SIMA-UI2.21.0056 100 cm 77 2.6 2.206-07 0.00/0.031 84.33 3188.83 YE 2.0067 SIMA-UI2.21.0057 400 '10 97 2 1.007-00 0.00/0.031 40.33 3188.83 YE 2.0007 SIMA-UI2.21.0075 97 2 1.007-00 0.000/n.h. 40.33 118.93 YE 2.00015 SIMA-UI2.21.0015 987 2 1.007-00 0.000/n.h. 40.37 1393.10 2.00015 SIMA-UI2.21.0015 987 1 8.472-66 0.0007/n.h. 500 977 2 1.007-h.6 0.0007/n.h. 1 8.472-66 0.0007/n.h. 528 4070.00 2.984015 SIMA-102.200105 97 2 1.007-66 0.007/n.b. 528 4070.00 2.984015 SIMA-102.200105 97 1 8.477-65 0.002/n.025 528 4233.00 2.984015 SIMA-102.200105 97 1 8.477-65 </td <td>UJ22</td> <td>3045.00</td> <td>YES</td> <td>2LM05S</td> <td>SIMA.UJ22.2LM05S</td> <td>1000/ 400</td> <td>5∨</td> <td>251</td> <td>5.02E+08</td> <td>0.07/0.047</td> <td></td>		UJ22	3045.00	YES	2LM05S	SIMA.UJ22.2LM05S	1000/ 400	5∨	251	5.02E+08	0.07/0.047	
BOD BA33 S188.33 VfS ZMN71 SMA.41.2 ZMN75 MeV 100 P/L 2 AUG-06 D.004/n.k UA3 139.89 VfS ZMN75 SMA.41.2 ZMN75 MeV 100 P/L 2 L007-06 D.004/n.k UA3 139.89 VfS ZMN15 SMALUA22 ZMN75 MeV 10 P/L 2 L007-06 D.007/n.05 SMN47 139.10 2 ZMN15 SMAL02 ZMN155 MeV 10 SM 100 L007/n.15 MeV 10 SMA152 MeV 10 SM 100 L007/n.15 MeV 10 SMA142 ZMN155 MeV 10 SMA142 ZMN155 MeV 10 SMA142 ZMN155 MeV 10 SMA142 ZMN155 MeV 10 Z L007/n.15 MeV 10 Z <td>UJ23</td> <td>13.60</td> <td>YES</td> <td>2LM04S</td> <td>SIMA.UJ23.2LM04S</td> <td>1000/ 400</td> <td>3∨</td> <td>26</td> <td>2.20E+07</td> <td>0.009/0.031</td> <td></td>		UJ23	13.60	YES	2LM04S	SIMA.UJ23.2LM04S	1000/ 400	3∨	26	2.20E+07	0.009/0.031	
UA3 139.90 Vf 24001 940.403 940.413.403.403.503.403.403.403.503.505 940		RA23	3188.83	YES	2LM07S	SIMA.4L2.2LM07S	400/ 100	5∨	2	4.00E+06	0.004/n.k.	
Up: 13::00 2 20005 SMALUA27.20005 900.000 1 8.477-65 0.0001 12:80::07:00 2 80005 SMALUA27.20005 900.000 90 10 3667-60 0.0107/n.k 12:80::07:00 2 80005 SMALUA27.20005 900.000 2 2 1.087-66 0.0107/n.k 12:80::07:00 2 80005 SMALUA27.20005 900.000 2 2 1.087-66 0.0007/n.k 12:80::07:07:00 2 80005 SMALU32.20005 900.00 3 2 1.087-66 0.0007/0.01 12:80::07:07:07:07:07:07:07:07:07:07:07:07:0		UA23	139.90	YES	2LM015	SIMALUA23.2LM015	1000/ 400	3V	2	1.69E+06	0.007/0.035	
Page Page <th< td=""><td>UA27</td><td>139.90</td><td></td><td>2RM01S</td><td>SIMA.UA27.2RM01S</td><td>1000/400</td><td>3V</td><td>1</td><td>8.47E+05</td><td>0/0.031</td><td></td></th<>		UA27	139.90		2RM01S	SIMA.UA27.2RM01S	1000/400	3V	1	8.47E+05	0/0.031	
Fig. Sign: 0 Z 20005 Sign: 200 Z 200 Sign: 200 Z 200 <thz 200<="" th=""> <thz 200<="" th=""> Z 200</thz></thz>		R28/RA27	3391.10		2RM19S	SIMA.4R2.2RM19S	400/ 100	5V	180	3.60E+08	0.107/n.k.	
100 128 3927.00 204000 3044.482.2404.00 992 est yr 4 3.384.66 0.0010.01 28 4034.00 20441.53 5044.672.2404.13 506.66 3026.00.02 1.684.66 0.008(n.0.02) 28 4040.00 20441.53 5044.172.2404.133 506.66 3026.01.031 6.076.67 0.002.01 293 4157.00 20441.53 5044.172.2404.133 506.66 3026.01.031 6.076.67 0.002.01 203 4157.00 20441.53 504.07.175 500.06 30 1 8.474.66 0.012.000 813 5912.00 20480.55 504.07.173.3400.55 500.66 0.017.000 1 8.474.66 0.012.000 813 502.00 3400.55 504.04.23.3401.55 400.966 50 2 6.046.70 0.07.4. 814 6512.00 3400.15 504.06 50 2 6.046.70 0.07.4. 814 6512.00 3400.15 504.06 9 2 6.046.7		R28	3877.00		2RM09S	SIMA.13R2.2RM095	1000/400	3∨	2	1.69E+06	0.004/0.016	
100 28 4034.00 2 mm 2 (2000) 2 mm		R28	3927.00		2RM105	SIMA.14R2.2RM105	1000/ 400	3∨	4	3.39E+06	0.01/0.012	
V0000 200003 </td <td></td> <td>R28</td> <td>4034.00</td> <td></td> <td>2RM12S</td> <td>SIMA.16R2.2RM12S</td> <td>1000/ 400</td> <td>3V</td> <td>2</td> <td>1.69E+06</td> <td>0.008/0.026</td> <td></td>		R28	4034.00		2RM12S	SIMA.16R2.2RM12S	1000/ 400	3V	2	1.69E+06	0.008/0.026	
1000 128 4137.00 200035 500-00 yr 1 8.477-05 00/00.00 128 428.00 200045 20042 300405 20042 300405 20047 1828 423.00 200475 500A2 300415 500-00 1 8.477-05 0/0.002 1833 6062.00 200475 500-02 300405 500-02 3 1 8.477-05 0/0.000 1833 6062.00 300005 500-02 30 1 8.477-05 0.001/0.000 1833 6062.00 300055 500-02 30 1 8.477-05 0.001/0.000 1833 6062.00 300055 500-02 30 6 5.062-00 0.021/0.053 184 6426.00 300055 500-02 30 6 5.062-07 0.021/0.53 184 6426.00 300055 500-07 600-07 0.027/0.5 5.002-07 0.021/0.5 184 6422.00 300055		R28	4090.00		2RM13S	SIMA.17R2.2RM13S	1000/ 400	3∨	2	1.69E+06	0.008/0.031	
128 4248.00 2011 <		R28	4197.00		2RM155	SIMA.19R2.2RM15S	1000/ 400	3V	1	8.47E+05	0/0.028	
Bigs 4274.00 28M/15 Sinda RE28.2M/15 source yr 1 8.474-05 0.012.000 Bigs 5912.00 31M005 SindA/TG.33M005 source yr 1 8.474-05 0.012.000 Bigs 6067.00 31M005 SindA/TG.33M005 source yr 1 8.474-05 0.012.000 Bigs 6027.00 31M005 SindA/TG.33M005 source yr 1 8.474-05 0.002.000 Bigs 6124.00 31M005 SindA/TG.33M005 source yr 1 8.474-05 0.002.70.053 Bigs 6134.00 31M015 SindA/TG.33M005 source yr 8 1.064-07 0.07.1x. Bigs 6132.1 3184.25 SindA/TG.33M005 source yr 2 6.024-07 0.07.1x. Bigs 118.24 Yf5 SindA/TG.35M005 source yr 2 5.024-07 0.07.1x. Bigs 118.02.4 Yf5 <sinda td="" tg.35m005<=""> source yr<td></td><td>R28</td><td>4248.00</td><td></td><td>2RM16S</td><td>SIMA.20R2.2RM16S</td><td>1000/ 400</td><td>3V</td><td>2</td><td>1.69E+06</td><td>0.021/0.025</td><td></td></sinda>		R28	4248.00		2RM16S	SIMA.20R2.2RM16S	1000/ 400	3V	2	1.69E+06	0.021/0.025	
Bit Style S		RE28	4273.00		2RM17S	SIMA.RE28.2RM17S	1000/ 400	3V	1	8.47E+05	0.012/0.00	
B33 6007.00 380005 SMA, 14.3.380005 source yr 1 8.478-05 0.0002/0000 B34 6424.00 380005 SMA, 14.3.380075 source yr 1 8.478-05 0.0002/0000 B34 6454.00 380005 SMA, 13.3380075 source yr 8 1.068-07 0.002/0.053 B34 6454.00 3800155 SMA, 23.380155 edores yr 2 0.642-07 0.07.4. B34 6452.00 380155 SMA, 23.380155 edores yr 2 0.642-07 0.07.4. B37 532.02 1382.44 SMA05 SMA04 SM009 9 2 0.642-07 0.07.4. B37 1382.47 YT S SM005 SMA04 SM009 9 1 0.642-07 0.07.4. B37 1382.47 YT S SM005 SM044 SM009 9 1 5 0.057.6. B37 1387.27 YT <t< td=""><td></td><td>R33</td><td>5912.00</td><td></td><td>3RM03S</td><td>SIMA.17L3.3RM03S</td><td>1000/400</td><td>3∨</td><td>2</td><td>1.69E+06</td><td>0.011/0.00</td><td></td></t<>		R33	5912.00		3RM03S	SIMA.17L3.3RM03S	1000/400	3∨	2	1.69E+06	0.011/0.00	
Bit 6133 6124.00 34M075 SMA.133.34M075 rot rs 6 5.088±06 0.0027.053 Bit 6458.00 34M015 SMA.43.34M155 400±ee 9V 81 1.667±07 0.07/r.k. Bit 6512.00 34M015 SMA.43.34M155 400±ee 9V 32 6.408±07 0.07/r.k. Bit 6512.00 34M015 SMA.43.34M155 400±ee 9V 32 6.408±07 0.07/r.k. Bit 1532 13182.84 V15 SMA05 SMAA12.55M075 400±ee 9V 32 6.408±07 0.07/r.k. Bit 1512 13187.24 V15 SMM05 SMAA4.55M075 400±te 9V 32 6.408±07 0.07/r.k. Bit 13507.27 V15 SMM05 SMAA4.55M075 400±te 9V 12 20±60±0 0.04/r.k. Bit 13507.27 V15 SMM05 SMAA455MM055 400±te 9V 3 0.60±00 0.04/r.k. <t< td=""><td>~</td><td>R33</td><td>6067.00</td><td></td><td>3RM06S</td><td>SIMA.14L3.3RM06S</td><td>1000/ 400</td><td>3V</td><td>1</td><td>8.47E+05</td><td>0.002/0.0080</td><td></td></t<>	~	R33	6067.00		3RM06S	SIMA.14L3.3RM06S	1000/ 400	3V	1	8.47E+05	0.002/0.0080	
E B14 6458.00 38MUSS SMA (R.3.38MUSS 400 mp 9° 8 1.608-07 0.027/r.k. B14 6555.00 38MUSS SMA (R.3.38MUSS 400 mp 9° 8 1.608-07 0.027/r.k. B14 6555.00 38MUSS SMA (R.3.38MUSS 400 mp 9° 8 1.608-07 0.027/r.k. B15 31812.44 W15 SMA (R.3.38MUSS 400 mp 9° 2 6.484-07 0.07.r.k. B15 31812.44 W15 SMA (R.3.38MUSS 400 mp 9° 2 6.484-07 0.07.r.k. B15 13812.44 W15 SMA (R.3.58MUSS 400 mp 9° 1.084-06 0.007/r.k. B17 13507.27 W15 SMA SS SMA SS 400 mp 9° 1.099 0.007/r.h. 1.096-0 0.007/r.h. B12 13507.27 W15 SMA SS SMA SS 400 mp 9° 2 1.696-60 0.007/r.h. B12 13507.27 W15 SMA SS SMA SSS	LZ Z	R33	6124.00		3RM07S	SIMA.13L3.3RM07S	1000/ 400	3∨	6	5.08E+06	0.012/0.053	
Bit4 6515.00 3MML65 SMA/S 1.38ML5 eto/emp yp 32 6.408-67 Q/n.k. Bit4 6512.00 3MML75 SMA/S 1.38ML75 eto/emp yp 32 6.408-67 Q/n.k. Bit4 6512.00 3MML75 SMA/S 1.38ML75 eto/emp yp 32 6.408-67 Q/n.k. Bit5 1318.24 VE SLM075 SMA/S 1.53ML75 eto/emp yp 32 6.408-67 Q/n.k. Bit51 1347.727 VE SLM055 SMA/A 485.54M005 eto/emp yp 3 6.608-60 Q/n.k. Bit51 13477.27 VE SLM055 SMA/A 485.54M005 eto/emp yp 3 6.608-60 0.03/n.k. Bit51 13477.27 VE SLM055 SMA/A 485.54M005 eto/emp yp 3 6.608-60 0.03/n.k. Bit52 1557.70 6.4M1455 SMA/A 146.64.0035 eto/emp yp 2 1.687-66 0.037/n.k. UA3 106	ō	R34	6458.00		3RM15S	SIMA.6L3.3RM15S	400/ dep	5V	8	1.60E+07	0.02/n.k.	
B34 663.20 3MM375 SMA 43.38M375 e00 emp 9° 26 5.208-07 00237n/n.k 900 B52 13182.44 YES SMM05 SMM 53.50075 e00 emp 9° 2.6 6.874-07 00237n/n.k 852 13182.44 YES SMM05 SMM 53.500.75 e00 emp 9° 1 2.008-66 0/n.k. 1317.24 YES SMM05 SMM 53.500.75 e00 emp 9° 3 6.087407 00237n/n.k. 1317.27 YES SMM05 SMM 53.500.76 e00 emp 9° 3 6.087407 00337n/n.k. 1021 1395.77 YES SMM05 MA106.410.50 e00 emp 9° 3 6.087466 0.005/n011 1043 156.640 EMM255 SMM.106.81.04053 e00 res 9° 3 5.08-66 0.057/n015 1043 156.640 EMM255 SMM.106.81.04053 e00 res 9° 3 5.08-66 0.037/n.h. 1044 1691.90 <td></td> <td>R34</td> <td>6515.00</td> <td></td> <td>3RM16S</td> <td>SIMA.5L3.3RM16S</td> <td>400/ dep</td> <td>5∨</td> <td>32</td> <td>6.40E+07</td> <td>0/n.k.</td> <td></td>		R34	6515.00		3RM16S	SIMA.5L3.3RM16S	400/ dep	5∨	32	6.40E+07	0/n.k.	
952 1318.24 1YE 51.0075 600 res 99 32 6.608-67 0077.h.k. 853.2 1918.244 1YE 51.00055 900 res 99 1 2.005-66 0/n.k. 857.1 13.477.27 1YE 55.00055 900 res 99 3 6.608-67 0.077.h.k. 857.1 13.977.27 1YE 55.00055 900 res 99 3 6.008-66 0.04/n.k. 857.1 13.977.27 1YE 55.00055 900 res 91 3 6.008-66 0.04/n.k. 8622 1955.70 6.041405 50.001 res 91 3 6.008-66 0.05/n.016 8622 156.60 6.04135 50.004 res 91 6.3 1.268-66 0.035/n.016 104.3 166.06 6.04135 50.044.054.04005 900 res 91 6.3 1.268-66 0.035/n.016 104.3 16605.00 1YE 6.00025 900 res 91 3 6.002-66 0.032/n		R34	6632.00		3RM17S	SIMA.4L3.3RM17S	400/ dep	5V	26	5.20E+07	0.023/n.k.	
Bit Statu YE SLM055 SMM 23, SSLM045 SMM 25, SSLM045, SSLM	5	R532	13182.84	YES	5LM07S	SIMA.4L5.5LM07S	400/ 100	5∨	32	6.40E+07	0.077/n.k.	
0 1671 11477271 YEs 54M055 94M485584005 990 1595 3.19E-09 0.5157h.k. 1871 1350772 YES 54M055 34M4855840055 900 9 1595 3.19E-09 0.5157h.k. 1871 1350772 YES 54M055 34M485584005 900 9 4.002 0.004/n.k. 1862 19557.0 64M165 54MA455 54M455 900 9 2 1.68E-60 0.035/0.016 1862 1616.05 64M135 54M4455 900 9 6.3 1.26E-60 0.035/0.016 1043 16606.0 175 64M035 54M4456.40035 900 9 6.3 1.26E-60 0.035/n.k. 1044 16610.00 175<	NT	R542	-	YES	5LM04S	SIMA.2L5.5LM04S	1000/ Dep	5V	1	2.00E+06	0/n.k.	
□ IS371 13507.72 YTS STM000S SMA_SRS_SMM00S sequence yr 3 6.008+06 0.004/r.k R622 15955.70 64M64 SMA_ATS SMA yr 2 1.084+06 0.006/r.0061 B622 1616.66 64M64 SMA_ATS SMA yr 2 1.084+06 0.006/r.0015 B621 1616.66 64M64 SMA	ő	R571	13477.27	YES	5RM05S	SIMA.4R5.5RM05S	400/ 100	5V	1595	3.19E+09	0.515/n.k.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	R571	13507.72	YES	5RM06S	SIMA.5R5.5RM06S	400/ 100	5V	3	6.00E+06	0.04/n.k.	
BE22 1611.605 64.M135 SMA.136.66.M135 900.000 yr 2 1.684-06 0.037/0.015 U643 1064.00 64.M25 SMA.406.63.MU25 400.109 by 63 1.264-06 0.037/0.k. U64 16960.00 YE5 64.M025 SMA.406.64.M025 400.109 by 63 1.264-06 0.037/0.k. U64 16915.00 YE5 64.M025 SMA.406.64.M025 400'109 by 3 6.004-06 0.037/0.k. U64 16915.00 YE5 64.M025 400'109 by 3 1.624-08 0.14/0.k U66 16704.00 YE5 64.M025 400'109 by 81 1.624-08 0.039/0.k. U67 193.09 YE5 64.M055 SMA.406.64.M055 400'109 yr 8.474-05 0.011/0.01 U67 10.000 64.M025 54.00'109 90'109 Yr 5.467-07 0.039/0.k.		R622	15955.70		6LM16S	SIMA.16L6.6LM16S	1000/ 400	3∨	2	1.69E+06	0.006/0.061	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		R622	16116.05		6LM13S	SIMA.13L6.6LM13S	1000/400	3V	2	1.69E+06	0.025/0.016	
UIS4 16606.00 YES 64.0015 SMA.46.54.0015 400 r00 59 3 6.008-06 0.032.71.nk. UIG4 1.6619.00 YES 64.006.25 400 r00 59 22 5.444-66 0.14/n.k. UIG6 1.6719.00 YES 64.006.25 400 r00 59 21 5.447-68 0.031/n.k. UIG6 1.6704.00 YES 64.006.55 400 r00 59 51 1 6.476-68 0.031/n.k. UIG6 1.9704.00 YES 64.006.55 400 r00 59' 51 8.476-60 0.031/n.k. UIG6 1.9704.00 YES 64.006.55 400 r00 59' 51 8.476-60 0.031/n.k. UIG6 1.9704.01 YES 64.006.57.680/CS5 400 r00 59' 27 5.467-67 0.037/n.k. UIG6 1.020.01 64.005.27.680/CS5 400 r00 59' 27 5.467-67 0.037/n.k.		UA63	106.40		6LM25S	SIMA.UA63.6LM25S	400/ 100	5∨	63	1.26E+08	0.087/n.k.	
UI64 16610.00 YTS 64M02S SMA4.66.04/025 e00*08 p> 272 5.44f-68 0.34/n.k. UI66 16704.00 YTS 64M02S SMA4.66.04/025 e00*08 p> 11 16.7f-68 0.34/n.k. UI67 193.00 YTS 64M02S SMA4.66.04/025 e00*08 p> 11 16.7f-68 0.03/n.k. UI67 193.00 YTS 64M05S SMA4.067.64M05S e00*08 p> 27 5.44f-68 0.03/n.k. UI67 193.00 YTS 64M05S SMA4.067.64M05S e00*08 p> 27 5.44f-68 0.03/n.k. UI67 104.00 64M02S SMA4.067.64M05S e00*08 p> 27 5.44f-67 0.03/n.k.		UJ64	16606.00	YES	6LM01S	SIMA.4L6.6LM01S	400/ 100	5V	3	6.00E+06	0.032/n.k.	
UI66 16704.00 YE5 66M025 [SIMA.UA65.68M025 400'100 SV 81 1.52£408 0.039/n.k UA67 193.90 YE5 66M065 [SIMA.UA67.66M0665 1000.400 SV 1 8.47£+05 0.011/0.021 UA67 104.00 66M055 [SIMA.UA67.66M055 400'10 SV 27 5.40E+07 0.059/n.k		UJ64	16619.00	YES	6LM02S	SIMA.4L6.6LM02S	400/ 100	5V	272	5.44E+08	0.14/n.k.	
UA67 193.90 YES 6RM06S SIMA.UA67.6RM06S 1000/400 3V 1 8.47E+05 0.011/0.021 UA67 104.00 6RM25S SIMA.UA67.6RM25S 400/100 5V 27 5.40E+07 0.059/n.k.	9	UJ66	16704.00	YES	6RM02S	SIMA.4R6.6RM02S	400/ 100	5V	81	1.62E+08	0.039/n.k.	
C UA67 104.00 6RM255 SIMA.UA67.6RM255 400/100 5V 27 5.40E+07 0.059/n.k.	NT	UA67	193.90	YES	6RM06S	SIMA.UA67.6RM06S	1000/ 400	3V	1	8.47E+05	0.011/0.021	
	Q	UA67	104.00		6RM25S	SIMA_UA67.6RM25S	400/ 100	5V	27	5.40E+07	0.059/n.k.	

one example (first part)

Location	Area	Dcum [m]	Critical Area	RadMon Ident. Nb	Localization (SIMA)	RadFET 1/2	SEU sens	Counts	Fluence hadrons [cm ⁻²]
POINT 1	RI132	26516.00		1LM07S	SIMA.4L1.1LM07S	400/ 100	5V	48	9.60E+07
	RI132	26516.00	516.00		SIMA.4L1.1LM18S dep/ dep		5V	55	1.10E+08
	UX15	0.00		1RE07S	SIMA.UX15.1RE07S	1000/ 400	3V	1	1.69E+06
	RI171	145.00		1RM07S	SIMA.4R1.1RM07S	400/ 100	5V	25	5.00E+07
	RI171	145.00		1RM19S	SIMA.4R1.1RM19S	1000/ 400	5V	59	1.18E+08
	RI171	224.00		1RM10S	SIMA.6R1.1RM10S	400/ 100	5V	17	3.40E+07
	RI12/RR17	247.69		1LM14S	SIMA.8L1.1LM14S	1000/ 400	5V	0	8.47E+05

Review Of Radiation Levels and Updates

Chamonix 2010: January 27th

Session 6 – Radiation To Electronics: R2E Summary

Beam-Gas calculation assumptions:

- residual gas density: 10¹⁵ mol/m³ (H₂-equivalent)
- beam 1 only, results scaled by a factor of two

Tunnel: DS/ARC

Tunnel: DS/ARC

Magnet Do	se/Gy/y	Error / %
MQ 7:	26.3	6.3%
MQ 8:	37.0	8.7%
MBA 8:	13.9	2.0%
MBB 8:	8.6	2.7%
MQ 9:	32.9	6.3%
MBA 9:	7.1	2.5%
MBB 9:	6.7	2.3%
MQ 10:	34.2	5.5%
MBA 10:	6.9	2.1%
MBB 10:	6.2	2.4%
MQ 11:	14.4	4.8%
MBA 11:	6.8	3.4%
MBB 11:	6.3	3.5%
MQ 12:	2.8	12.0%
MBA 12:	6.1	2.8%
MBB 12:	1.4	6.7%
MBC 12:	0.4	10.1%
MQ 13:	3.5	10.3%
MBA 13:	0.4	7.9%
MBB 13:	0.3	12.2%
MBC 13:	0.2	10.2%

Summary Table:

- Doses highest in change from LSS to bent region
- Peaks where matching is done (Q8, Q11)
- MBB12 worst case for Power-Converters
- >=MBB13: <=1Gy/y</p>
- -> what comes from the LSS?

Tunnel: DS/ARC

Beam-Gas Only as before

Thanks to R. Assmann et al.

Magnet	Dose/Gy/y	Error / %	S
MQ 7:	26.3	6.3%	
MQ 8:	37.0	8.7%	 Colli
MBA 8:	13.9	2.0%	• ho
MBB 8:	8.6	2.7%	• lim
MQ 9:	32.9	6.3%	
MBA 9:	7.1	2.5%	
MBB 9:	6.7	2.3%	• 11
MQ 10:	34.2	5.5%	←
MBA 10:	6.9	2.1%	
MBB 10:	6.2	2.4%	
MQ 11:	14.4	4.8%	
MBA 11:	6.8	3.4%	
MBB 11:	6.3	3.5%	_
MQ 12:	2.8	12.0%	only
MBA 12:	6.1	2.8%	an
MBB 12:	1.4	6.7%	est
MBC 12:	0.4	10.1%	
MQ 13:	3.5	10.3%	
MBA 13:	0.4	7.9%	
MBB 13:	0.3	12.2%	
MBC 13:	0.2	10.2%	
	Magnet MQ 7: MQ 8: MBA 8: MBA 9: MBA 9: MBA 9: MBA 10: MBA 10: MBA 10: MBA 11: MBA 11: MBA 11: MBA 12: MBA 12: MBA 12: MBA 12: MBA 13: MBA 13:	MagnetDose/Gy/yMQ 7:26.3MQ 8:37.0MBA 8:13.9MBA 8:13.9MBB 8:8.6MQ 9:32.9MBA 9:7.1MBB 9:6.7MQ 10:34.2MBA 10:6.9MBB 10:6.2MQ 11:14.4MBA 11:6.8MBA 12:2.8MBA 12:2.8MBA 12:0.4MBA 13:0.4MBC 13:0.4MBA 13:0.3MBC 13:0.2	MagnetDose/Gy/yError / %MQ 7:26.36.3%MQ 8:37.08.7%MBA 8:13.92.0%MBB 8:8.62.7%MQ 9:32.96.3%MBA 9:7.12.5%MBB 9:6.72.3%MQ 10:34.25.5%MBA 10:6.92.1%MBB 10:6.22.4%MQ 11:14.44.8%MBA 11:6.83.4%MBA 11:6.83.4%MBB 11:6.33.5%MQ 12:2.812.0%MBA 12:6.12.8%MBA 12:0.410.1%MBC 12:0.47.9%MBA 13:0.312.2%MBB 13:0.210.2%

Chamonix 2010: January 27th

Scaled with	Collimation Loss IR7 [Gy/y]	All Magnets at Quench [Gy/y]
Callingation	bad statistics	926.2
Collimation	417.2	497.7
 horizontal Loss 	bad statistics	277.2
 limited statistics 	5.3	69.4
Quench	501.9	418.2
	348.2	181.0
	258.3	84.7
\longleftrightarrow	349.6	447.6
•	20.2	264.9
	7.5	78.4
	2913.6	1100.3
	321.5	173.9
	110.1	74.1
oniy a quick	scoring problem	632.2
and rough	43.2	252.1
estimation	1.7	45.8
!!!	bad statistics	64.7
	30.2	527.7
	bad statistics	60.0
	bad statistics	43.0
	bad statistics	54.1
24	Session 6 – Ra	diation To Electronics: R2E Summary

R1: UJs, RRs and ULs

LHC Point 1, right side;

© A. Mereghetti et al.

FLUKA implementation of the ATLAS cavern, the LHC tunnel up to the RR17 with UJ16, UJ17 and UL16 service tunnels;

Beam-Beam collisions

High energy hadron fluence [units of 10⁶ cm⁻² per 100 fb⁻¹] © A. Mereghetti et al.

- Hot spots: Triplet, TCL5.R1.B1;
- RR: Consistent with earlier estimates Baishev et al.
- UL: long distance to UJ required (+shielding)

IR1: UJs, RRs and ULs

What is a 'safe' limit in terms of high-energy hadron fluence?

Scaling With LHC - Operation

- Good idea for 2009/10
- Possible view for 2011
- General problem when putting 'years' (longer operational period, etc...)
- Below table as currently used (not final) and easy update possible
 © M. Lamont

Loss Mode	2009/10	2nd Oper.	3rd Oper.	4th Oper.	Nominal	Ultimate	SLHC
Average Intensity (%of Nominal)	5	15	30	40	100	148	296
Peak Intensity (%of Nominal)	15	15	30	40	100	148	296
Peak Intensity (p/beam)	4.8E+13	4.8E+13	9.7E+13	1.3E+14	3.2E+14	4.8E+14	9.5E+14
Peak Intensity (p/beam/s)	5.4E+17	5.4E+17	1.1E+18	1.5E+18	3.6E+18	5.4E+18	1.1E+19
Peak Luminosity	1.0E+32	3.0E+32	1.0E+33	3.0E+33	1.0E+34	2.3E+34	1.0E+35
Average Luminosity	5.0E+31	1.0E+32	5.0E+32	1.0E+33	1.0E+34	2.3E+34	5.0E+34
BeamGas-Density (ARC)	2.00E+14	1.00E+14	3.00E+14	1.00E+15	1.00E+15	1.00E+15	1.00E+16
Integrated Luminosity (LHCb) [interactions/y]	3.2E+12	3.6E+13	8.0E+13	1.1E+14	1.6E+14	3.7E+14	8.0E+14
Integrated Luminosity (CMS, ATLAS) [fb-1]	0.5	1.2	10	30	100	230	500
Direct losses (IR7, single beam)	5.75E+14	1.73E+15	3.45E+15	4.60E+15	1.15E+16	1.85E+16	3.40E+16
Direct losses (IR3, single beam)	1.58E+14	4.73E+14	9.45E+14	1.26E+15	3.15E+15	5.07E+15	9.31E+15
Direct losses (DUMP)	5.75E+14	1.73E+15	3.45E+15	4.60E+15	1.15E+16	1.85E+16	3.40E+16
Direct losses (TCDQ)	1.70E+12	5.10E+12	1.02E+13	1.36E+13	3.40E+13	5.47E+13	1.01E+14
Direct losses (TED)	2.00E+15	3.00E+15	3.00E+15	4.00E+15	1.00E+16	1.61E+16	2.96E+16
Beam gas interactions (/m/y/beam)	2.76E+09	4.14E+09	2.48E+10	1.10E+11	2.76E+11	4.08E+11	8.16E+11
Beam gas P4 (/m/y/beam)	2.40E+08	3.60E+08	2.16E+09	9.60E+09	2.40E+10	3.55E+10	7.10E+10

30

Chamonix 2010: January 27th

Summary Of Areas

Summary Of Areas – See Direct Link

	LHC	Area(s)		High-Energy Hadron Fluence [cm-2/y]								1
LHC	Point	Alea(S)	2009/10	2nd Oper.	3rd Oper.	4th Oper.	Nominal	Ultimate	SLHC	Ratio	Priority	n
Point	Deint 7	UJ76	1.0E+08	3.0E+08	6.0E+08	8.0E+08	2.0E+09	3.2E+09	5.9E+09	2.0	1	ty
	Point /	RR73 RR77	1.0E+07	3.0E+07	6.0E+07	8.0E+07	2.0E+08	3.2E+08	5.9E+08	50.0	1	
Point 1		TZ76 (start)	1.0E+06	3.0E+06	6.0E+06	8.0E+06	2.0E+07	3.2E+07	5.9E+07	10 (guess)	4	
		UY85b	2.05+07	2.05+06	5 0E+09	6 7E+09	1.05+00	0.2E±00	5.0E+00	0.2	1	
		US85	5.0E+06	5.6E+07	1.3E+08	1.7E+08	2.5E+08	5.8E+08	1.3E+09	2 (guess)	2	
Point 3	Point 8	UW85	1.0E+06	1.1E+07	2.5E+07	3.3E+07	5.0E+07	1.2E+08	2.5E+08	10 (guess)	3	
		UA83/87	5.0E+05	5.6E+06	1.3E+07	1.7E+07	2.5E+07	5.8E+07	1.3E+08	5 (guess)	4	
Point 4	TI2	UJ23	1.4E+07	2.1E+07	2.1E+07	2.8E+07	6.9E+07	1.1E+08	2.1E+08	5 (guess)	3	
	112	UA23	6.9E+06	1.0E+07	1.0E+07	1.4E+07	3.5E+07	5.6E+07	1.0E+08	10 (guess)	3	
Point 5	Т18	UJ87	1.4E+07	2.1E+07	2.1E+07	2.8E+07	6.9E+07	1.1E+08	2.1E+08	5 (guess)	3	
		UA87	6.9E+06	1.0E+07	1.0E+07	1.4E+07	3.5E+07	5.6E+07	1.0E+08	10 (guess)	3	
Point 6		ARC: MBs	6.4E+07	9.5E+07	5.7E+08	2.5E+09	6.4E+09	9.4E+09	1.9E+10	4.0	3	
		ARC: MQs	6.4E+08	9.5E+08	5.7E+09	2.5E+10	6.4E+10	9.4E+10	1.9E+11	2.0	3	
	ALL	DS: MBs	5.0E+09	1.5E+10	3.0E+10	4.0E+10	1.0E+11	1.6E+11	3.0E+11	4.0	3	
		DS: MQs	5.0E+10	1.5E+11	3.0E+11	4.0E+11	1.0E+12	1.6E+12	3.0E+12	2.0	3	
		REs	1.7E+05	2.5E+05	1.5E+06	6.7E+06	1.7E+07	2.5E+07	4.9E+07	20 (guess)	4	

Chamonix 2010: January 27th

Session 6 – Radiation To Electronics: R2E Summary

"Easy Options"

Access-Gates in UJ14/16/23/87

- **Can be switched off during operation**
- Procedure with OP in preparation
- contact: L. Ponce, R. Nunes

Equipment which can remain (partly) in place

- **QPS** (further development possible)
- **BPM** (mostly ok)
- **BLM** (VME crate only temporarily)
- **Some cryogenics control** (partly the same as in tunnel)
- Details in Equipment-Summary (G. Spiezia, see link) and talks from D. Kramer and T. Wijnands

"Rad-Tol Design"

Remote-Valve-Controllers in US85

- Solution known from other areas
- Order started Installation in 2010/11

Power-Converters (120/600A)

- Details in talk from Y. Thurel
- **New FIP Development**
 - Details in talk from J. Serrano
- **Common Developments**

Possible working group with PH-ESE for common development of FPGA or micro-processors?

e.g., generic field-bus, or acquisition module for temperature, pressure, low precision voltage measurement etc...

Shielding

UJ87/88 – UJ23/22 – Shielding

- Shielding installed before LHC-re-start
- Analysis confirms the expected improvement
- ~Factor of 10 less radiation (high-energy hadron fluence)
- Relaxed situation for this years operation
- Long-Term solution will require further measurements
- Possible issue with low-energy neutrons

UJ14/16 Shielding Options

Updated FLUKA Calculations for Various (Theoretical) Shielding Layouts

To Compare: Unshielded Case (as installed now) ... at least theoretically

UJ14/16 Shielding Options

Correct ...

Reason for Shielding Limitation:

Improving the Weak-Points

Assuming 1 year of operation at nominal luminosity (100 fb⁻¹)

Assuming 1 year of operation at nominal luminosity (100 fb⁻¹)

- **Smart-Shielding'** in UJ14/16 can lead to significant improvement -> not a final solution, but also important in order to possibly use parts of the UL
 - staged implementation possible
 - @ detailed integration study to be launched as soon as possible
 - Iurther optimization required (currently about 60m³ iron and 40m³ concrete)

Q UJ56-shielding is only effective at the lower-floor

- e useful either for protection of safe-room equipment
- or in case reshuffling with power converters has to be considered
- cost estimate available: ~500kCHF
- e no other option in place...

Other Areas – Where Shielding is an Option

- UJ76: Safe-Room shielding could be slightly improved
 - e safe-room equipment remains at risk
- UJ/UA/23/87: already improved, further steps possible
 - combined simulation/integration study required
- @ RR/13/17/53/57
 - e shielding similar to RR73/77 possible
 - @ more complex shielding could be envisaged (see existing conceptual ECR)
- @ UA63/67
 - ducts already shielded
 - additional rods could be added if required
- @ UJ32 (RE32)
 - In case monitoring shows that beam-gas is a long-term issue

Relocation

Early Relocations

Fire/ODH Control Racks

Relocation already performed in UX/S85

UJ76, UJ56 pending

Possible impact on safety

To be scheduled for next shutdown

Fire Detectors

Possible impact on safety chain (not a safety issue)

Most areas affected

- For long distances tests ongoing
- To be scheduled for next shutdown

Other Equipment

Scenarios studied (partly prepared for)

- BIC, PIC, WIC
- Timing/Remote-Reset

Complete Relocation: e.g., US/UW85

Good News / Bad News Solution exists / Expensive and Time Consuming

Most of the Equipment has to be relocated

Cryogenics, WIC, Timing, Remote-Reset, UPS, Access Control, Network, AUG control, Electrical Distribution (Control), GSM, Fire/ODH (already done)

Detailed Study (A.L. Perrot + Equipment Owners)

Cost and Time estimate available (1MCHF, Long-Shutdown)

Cabling needs to be prepared early

(4-6 month lead time)

2-3 month of work to prepare for possible relocation (report in final draft version)

Planning/Coordination/Follow-Up required soon

UJ14/16 – Upgrade Study

Other Areas – Where Relocation is an Option

OJ76: preparations in place

- @ change possible if required to house RR equipment
- e decision required soon

@ UJ14/16: possibility in US15 and UL

- @ first studies for upgrade not trivial
- to be studied further

UJ56: option in UP/USC-bypass

- @ first studies for upgrade not trivial
- PM56 is most probably not an option

RRs

- RR73/77: possible to relocate equipment into TZ (see above), but requires significant TZ-layout changes
- others: not possible

Civil Engineering

Locally Enlarging Areas

Considered as hardly feasible with equipment in place...

RR Shafts & Caverns (P1 and P5)

Constraints:

- Large Costs (~10MCHF each)
- Important lead time required (~4 years)

Known Solution:

- Solves issue at RR13/17/53/57
- Allows for work during operation
- Relocation could be optimized during one shut-down
- No issue with cable lengths

In Addition – See Talk(s) from S. Weisz:

- Accidental Helium-Release
- Opens further doors for LHC Upgrade-Scenarios
 - could this also solve UJ56 ??? (UA extension)

Other Options

Superconducting Links

- **R&D Work** is being carried out at CERN for the development of HTS links on two fronts (A. Ballarino):
- Development of semi-flexible MgB₂ link for the powering of the Triplets for the upgrade phase-1 (up to 100 m length, ~ 120 kA in multiple circuits, EDMS N. 1046267);
- 2) FP 7 European collaboration for the development of gas- cooled HTS links operating at higher temperatures and suitable also for vertical transfer of current.
- Immediate' option for power converters at Point-7 ? (similar to SCL at Point-3, DSLC-length of ~450m)

How To Compare

How To Compare the various 'Options'

- Qurrent planning summarized in 'working table', constantly updated (see <u>link</u>)
- **@** Taking into account:
 - Area Priority
 - Possible Mitigation Option

Comparing:

- Radiation Levels (before and after)
- Cost + Uncertainty
- Required Lead- and Installation-Time
- Long-term Sustainability

Q Next: grouping of options by operational period

A veeery long table....

How To Compare

- Further Analysis necessary
- Details required to fully compare various options
 QUR SUPPORT IS NEEDED
- **General Work** to be defined for all groups (draft list exists)
 General Work extended seminar will be organised to the organised to
 - specify detailed needs

Workshop to be scheduled @ ~ Mid-April

Based on its result a (phased) proposal is to be prepared for the management

safety warning: don't try to read

	LHC Pekt	Area	Auton	Option	Cost (MCHF)	Uncertainty [14]	Radiation (Max) Level Before Jam 2 v/11	Radiation (Max) Level After Jorn 2 v.13	Required When	Required Load Time Invested	Required Installation Time Dependent	Reference	Converts	Ewish Austria
	40	Taxad	NewFOP Development and exchange PC development/schange of		1	100	1.005-1	name	20127 (348 Ran Paried) 20127	12			Javier any estimate for the FIP? priceous in-defail as far, Yosa	ave.
	-	Sure Per Point	diag part" Option 1:		NOF	Option 2	1.00.11	MOHE	Option 2		NOF		Johns de processagent for the SEA part. Tradit de processagent de tabler as there is an other scholar and the	
	-	SUVs (heleficor)	anprove sherdeg sale room	0	0.2	10	1000-0	1,02+6	22rd Raw Parind (ECKRepat	the safe-news equipment free detectors to be revised from the 10.75 and installed in the TZ (in	Schein
	'	0.09	Fre-cescorecaron			20	THE V	1.161	(2rd Ran Paried)			Curchapar	case of failers of one datactor the full chain could get Nocked)	574
	'	60%	(five(0DH Caves))	0			Line-or	e let	(2rd flars Paried) (2011)			ECRIRaport	toold remain undedented. > andy relocation into TZ recommended	SVe
							1.00.00		(2nd Ran Paried)				the ECR for detectors to be relocated and installed in the TZ (in case of failure	
		NRITS	Pre-celector rescalor	0	1	14	186-0	< 16.1	(2nd Ears Paried)				of one behavior the full chain could periodolece) -> the long balance (> 2054) regimes a special installation convertly under study of convert extended on a cell automatic	574
		8823	Power Converter statistical reducing? + soliciation	1		100	1005-0	< 167	20127 (3rd fran Parind)	12			involves PC development (costs of development party included?)	10
													(30x24970) (50+12 Conv) + 300x7687400xxx272 + 52 preparation (10 uf state: 300247)	
	· .	8871	Power Converter RedTol Design? + exercities		Ι,	100	1005-0		20127				If convert shallding is not sufficient as for other points a ratheard design cauld be serviced. In measures anteness, then 1 years (production costs extinated survive to above	140
			relocation										(20x24F30 (60+12 Core) + 200x56F300xx222 + Fadriant design contex (100x of tetral development cont: EMCHF > 0.59ECHF)	
	7	8875	kng 90L	3	15	100	1.02-0	< 18T	2012? (3rd flam Paried)	м		2	long SCL Nov TZ is RR \sim costs (pare-pass. IROPF instalation, 10th of total development costs: 28CHF \simeq 8.258CHF)	Anala
	7	6877	Fire-Detector relocation	0	6.1	58	1.025-0	< 187	20117	6		2	the detectors to be relocated and installed in the TZ (in case of falces of one detector the full chain could perticulate) -> the large datasets	114
										-			2-20% regimes a special initialities cancelly under study of cancel shallong a net sufficient facilities of the decement	-
	1	6877	Power Converter dossical redesign? = relucation	1	-	900	1.025-0	< 167	(3rd Ran Paried)	12			process in, our approach loods of development party included?5 30x2x8798 (dit=12 Corv) = 308rr987400mm2*2 = 32 preparation	PEL Yang Amelie SCL
													r carvet shading a ret sufficient	-
	7	8877	Press Cerverter RodTot Dwign? • senaining relocation	2	-	100	1.025-0	1414	2012? (2xt Face Paried)	21	5	2	with the other panels a subhard design could be enviraged in resources ariseses, time 3 years (production costs withroaded surfar to allever 30x34F100 (68+12 cow) + 308th/687400mx272 + Raditard design	744
										-			caria (108 si*642/development cart: 4MCHP ~ 0.09CHP)	
	1	898.77	krep 901.	3	1.5	100	1.000-00	- 167	(3rd Ran Parted)	м		2	(c) post term to the local part part part (c) term provident, (c) of obtained on expression costs: 2800 PF → 2,2800 PF) second of the ratio for the part costs of the local part part (c) pa	Anala
	1	Sure Per Fuint	Deteror Collimation in IR3 Option 1	- 14	NOF	Ciption 2	1.00-0	MCHF	Option 3	4.6	MONT	Marwo	123 below option 3 is unlikely	ta ge
		UNIS UNIS	education Circ-Mocation	0	0.31	100	6.000-co	< 167 (4) 10 Kill # 167	201			endy ICL Initial 3. Candel	pere guess based on prel. Externate	Parata
		Nabilicem	add, Sheiding (in addition to shat is already in place)		0.36	8	6106-0	< 16.7	20127	2		partinization	to be writed if and when required	Anna Gaura Prances
		AWWS .	edocation	1	0.26	908	1.000-00	< NET	2019/127	6			pere guess	Panani Panani Anne saure
		LAWES .	sharding	2	0.5	100	1.05-0	- 167	2016127				per pers	Parana Anne-bas'e
		1081 UART	shariling	-4	- 11	900	6.000-07	< 167	20127				to be writed if required	ranat
		10.84 10.84	shielding	-4		200	LogV	< 167	20121				to be writed if required	
		33.54 Sure Par Point	Outline, 1:	- 12		Option 2		WCHF	Option 2	1.2	MOHE		and the later is the second	—
		0054	easy shielding	0	0.25	68	6.006-0	1,002-4	0/20147	,		Hudy KL	recense sources (but holping), anyway required to allow for UI, to be used later free detectors to be removed horn the UDH (in case of failure of one	Panasis
		10.04	Tre-Delactor-relocation	0		50	5.005-07	< 16T	20117	2			detector the full chain scalif get blacked) -> the new location has to be defeed	Panasis
		80.94	esergius shahferg	1	0.26	100	5.000-00	1,00-4	8/2011/127			-	power convertiers have to remain in place and are not red-foll forward convertiers have to remain in place and are not red-foll if alreading a not sufficient a cathord design could be an inserted in	Panasis
	· ·	0094	sadital Power Converter	2	- 16	100	6105-0	1410	20127	10			water and a second state of the second state o	744
	-									-			1385 of Nail Averagement cost: ERCHT -> E3MCHT) conte pure guess (SMCHT installation, 18th of Istal Averagement	
	'	10794	80.	3	0.75	908	5.000-00	< 9ET	20137	м		1	case 2002-07 \sim 0.25002407) \sim NET CLEAR where minimum-and in residued (vertical version from surface assumed to be improvided)	Anala
		0.095	excyshielding	0	0.25	100	5100-0	1,02-0	9 20117	,		andy KL	ion's temporary (but heijing) lead time dominated by integration and optimization	America America (C.)
		0.046	Fre-Detector relocation	0	0.1	50	5.005-01	- 18T	20117	2			For detectors to be removed from the 10-16 (in case of failure of one detector the full chain stall get blacked) in the rese location has to be detector.	Sive Panala
		0.05	complex shielding	1	0.25	100	5.000-00	1.00-0	0 201 1/127				dill not final solution, but required in case solution has to be found that loover converters have to remain in obice and are not rad-kol	Farcela Teles
			sal ta Parer							-			f shelding is not sufficient a sufficient design could be enviraged measures calcourt, firm 2-years (production costs antimated samlar	
	· ·	0.96	Converter development	2	1.6	500	5.000-0	1000	20137	24			Is down: 30x249*16 (13+3 Con-(+2973)2+1 spans)+ RadNas(-design-costs 31.986 of Iosal development cost: #ROPF -> E5M24P)	140
	,	0.75	90,		0.75	100	6.005-01	< 957	20137	ы			cents: pure puese (SMCHF installation, 18th of Islai development cent 2802HF $\simeq 0.25MCHF) \simeq NCF$ CLEAR where station would be	Anata
		005416	adocation				60050	1.97	2013/2013 (crift) 161				plateted particle variable from surface assumed to our impossions) philat education of equipment (other flow Poul to US15, POs to	-
	1	6813	single shielding	0	4.5	64	1.026-0	1.806+6	Bhardeg' a gor short			1987 experience	week, USIS peeble simple block shedding could improve situation as in P? -> question if	Panaia
	•	698.13	Fire-Defactor relocation	0	0.1	68	1.000-07	< 1027	201 9 127			1	The detectors to be relocated (in case of failure of one detector the full chain mald (at blocked) in the long detained (-200m) regimms a	Sive Panelo
													complex sheeting as discussed in available ECR -> can this be replecemented as such and what is the read gave? (NOT CLEAR #	
Ľ		6415	control strenged	'			100-0	1,00,4	*20177			(CCCNapa1	PAIT TOGETHER WITH SMPLIC SHELDING, THEN THE FLUENCE COULD GO DOWN TO SOME LET	Paran
	1	8810	6405	2	11.5	8	1.025-0	< 1627	20137	10	5	1	Instantion MCOP 12 (dec) = 1 (prop) = 5 (prove) (org 512), how IP area (MCP CLEAR where to reside the station/10 FR	2/cain
		CIRR	krg SC.	3	1.5	100	1.025-01	< 102.7	20127	м			² cosh juan paras. WColf instalation, VBI of total development paras. 20(2)(7): 8.228(2)(7) control. biol. shadlow could improve shadron as in 172 - 1 mandres if	Anala
		100.17	Englis English				10040	108.1	augur shart			tor aquesesa	possible free detactors to be relocated (in case of failure of one detactor the full basis of the detactor of the detactor of the detactor of the failed of the detactor of th	Tanan Iva
					-						-		special installation convertis ander shafe complex sheeting as discussed in providine ECH -> can time ter	Panala
		8817	xorgies shielding	1	- 63	68	1.06-0	1,05+0	020137			ECR.Report	Philling all be selfand in the long term, problems expected > P PUT TOGETHER WITH SMPUE INELLOWG, THEN THE PLUENCE	Parado
	1	68.17	6403		11.5	52	1.025-0	< 162.7	20137	10		2	COLD GO DOWN TO SOME TO softwate MORE TO Jacob + 1 (perc) + 3 (nouve)	A/van
	,	88.17	keg SOL		1.6	900	1.005-01	< 957	20127	м	5		long SCL from IP area (NCP CLEAR when to restal the station) to FR in only pane game. TROPF installation, 1999 of total development seeks. 2009 (2):4 2(802)(4).	Anda
	•	0751470	heat releasion	- 4	0.35	100	1.000-07	+ 108	20127	,			Incluars if required (possibly sufficiently tot.) If you than atomy gradient, thus important representant possible data to possible atom.	A1040
		Sure Per Point	Option 1:	2.68	(MOF	Option 2	28.71	(MOF	Option 2	7.95	MOHE		option 1 includes risk, option 3 is artikely and/u for lower four to possibly	_
	5	11.94	shariting	0	6.5	900	5.000-0	over foe: <25 aper foe: 223	20117			endy KL	heig exten equipment in pace. The instrument (in a shading requirement) of least GAX f others are	fancti
	7	11.56	Fie-Detector wiscator	0	6.1	62	6.005-0	< 167	20117	2			position to be received after two developments. The distributes to be received if have the 10.001 and installed in the UP (detailed location to be defined)	NV8 Parcet
	1	1056	Early Relection (FireODH Canini)	0	0.1	64	6.000-0	< 167	20117	2			precide-correct radii considered as possible safety asse in case of fire (coold remain andedecked) -> early relocation recommended (ocation to be defined)	Stvia Panosis
													PCs must server of least GAX F others pre-	
	,	0.95	niceater Phase-I:	0	- 65	100	5.005-02	5.02-0	2011/127 5 (with add.				positive to be moved prior new cases of development or stay is place in case of RadToI design- see needpoint PC design) - as the above pheating will improve the situation-only at the lower floors a two-stage	haven
									comong.				restaution sould be envirologed, altowing first to engly the lower part and relacate (study-pending), then more the PCs to the lower fluor (share shalding year addet)	
							10000		2012107				in case shielding is not sufficient, relocation of possibly remaining	
	1	1054	Indocation Phase (1	0	8.6	100	(encare 1.302-08	< 167	(with add. Sharideg)	· ·		1	possible to be moved john new classical development) or skap in place (in case of EadToi design: see next point PC design)	Parcel
			Press Canadar										A site degra not sufficient socilises PC de integrised	
		0.96	dassal redesge3 + relication	'		900	6.000-00	< 167	20127	12			(costs of development party included?) (0x0HF*16 (13+3 Coru) + 201*3 (2+3 pare) + 458A skill has to encal (sheeled)	he
			Power Carverler										f chiefdog is net sufficient. In fer ofter paints a cadrant design cauld be revisaged -> resources.	
	· '	n:095	non-of Design? + nonaining ndocation	2	1.6	100	5.00E+0		10127	24			Distances, first 3 years (production costs instruded similar is above 30(DHP*16(13)-3 Conv(+2073(2+1 spars))* Radifiant design-costs (318) of Iolal development.cost. 48(CHP -> 1,5M(CHP))	740
	5	11.54	90.	3	1.6	100	6.000-0	< 967	20137	ы			NCL from UJ to 777 AURCL-> conto (para guesse TMCHF installation, 10th chicks development cash: 240-0F -> 12540-0F1	Anda
		8853	singlik shialding	0	0.5	50	1.005-07	1.00-4	0 20117	,		197 experience	simple block shelding could improve situation as in $\mathrm{PT} \to \mathfrak{gaustion}$ if presettin	Panelo
	1	8853	Pre-Delector relocation	0	0.1	50	1.005-07	< 18T	2011/127	6			pre-entrement to be iniciated (in case of failure of one detector the full chain muld-periblicited) -> the long distance (-250m) requires a special establishion currently under shafty	Sive Panala
	5	KIRS3	complex ubiniding	1	0.3	50	1.000-0	1,02>4	0 20137	6		CORReport	complex sheeting as document in available ECR -> can this be represented as such and orbit is the real gam? (ROT CLEAR # chesting will be sufficient in the law.)	Panada
	5	8853	dada	2	11.6	50	1005-07	< 167	20137	18			odmate MOP 12 Med + 1 (proj.) + 5 (movi	Shain
	5	8850	keg SC.	3	1.5	100	1.000-00	< 1017	20127	м		2	ong SCL from P zesa (USC?) to RR -> costs (pare guese: VBCHF restallation, UBb of total development costs; (280-H -> 0.2580CHF)	Anala
	5	8857	single shaldeg	0	0.3	52	1005-0	1.02>0	8 20117	,		027 espetence	complections shelding could improve situation as in $PT \rightarrow$ question if potentials	Paners
		8857	For-Detector relocation	0	- 61	68	1.002-0	< 167	2014121				chain read-pail blocked) > the long detares (-200m) requires a special netallation currently ander shalp	Panan
	5	8857	surgios shiridag	1	6.3	64	1.025-0	1,000-4	8 20137			CCR:Report	complex shielding as discussed in available ECR > can this be replexented as such and what is the real gam? (NOT CLEAR #	Paran
	5	68.57	éscia	2	11.5	50	1.000-00	< 187	20137	10			where a second s	3ylvan
	5	888.57	keg SC.	3	1.5	932	1.055-0	< HET	20121	м			ong 90, fors P ana 3/901/to RP - cests jours guess: 1804F restatation, 1985 of total development costs: 280-4F -> 0/29804F1	Anala
	5	UP \$56	keal-obsation		0.36	100	1.005-07	< 166	20127	,			not sure if required (possibly sufficiently tol.) If yes then strong guideant, thus important representate possible due to	Artono
		Sure Par Point	Option 1:	2.75	NOF	Option 2:	24.60	(MCHF	Option 2	6.55	MOHT		option 1 includes risk, option 3 is anikely. [103] cantibution to be verified -> will define date of installation	—
	5	10020	(selfy re-anargoment)	1	4.5	900	up xi 383	s 987	1011127			-	reaer were distributed by programs and optimization PCDI sent-button to be verified -> wit define date of essained	hancels
		NUBT DAST	addtoxal shelding (saffy re-anangement)	1	6.5	900	ap to 528	< 96.7	2014/127			1	installation and time dominated by integration and epitedepitor	Amon
		Sure Par Point	Option 1: add. Thinking		MOF 02	Option 2		MORE	Option 2		MOHT	part installation	aad inte given through	tavair
								·					en model	
		Total	Options	1 2	18.5	19	maining risk (RR solution for PC+	s, UJs) In UJS6	-					
			(not all combinations)	3	21.7	SCL 6	olution technical	y unknown	1					
				Fix	3.8	shield	ing, early relocati	onak, US85	1					

Conclusions

- **Radiation levels** currently based on simulations, early measurements will have to improve this
- **Local shielding** supposed to improve the situation, even if not a solution in the long term for most areas gaining time
- **Relocation** options foresee all sensitive equipment
 - e safety issues: Fire/ODH rack in P5/7, fire detectors general
 - when final locations are identified, early relocations possible
 - In al relocation campaigns shall be done ideally for complete areas only

Q Alternative mitigation options:

If or areas where other solutions will be hard to find – their integration shall foresee also future requirements

First decisions required soon ...

Conclusions

- **Review of radiation levels** important for the coming years
- **@** Early operation will be an important input work needed now!
- Oetailed analysis of mitigation options
- Important inter-departmental effort to get as far as possible
- Stringent time constraints, it will not be enough to do things 'sequentially' (*i.e.*, first observe and then react)
 - Parallel work required (we already started in this direction)
- Required resources will significantly increase
- Continued support required from various key contributors (Planning and Integration, Equipment Owners, Point-Owners, FLUKA Team, RadMon Team, RP, RadWG,...)
- Follow-Up Workshop Required to prepare final proposal
 - When the second seco

Your Support Is Essential...

Many Thanks to Everybody

EN/MEF, EN/HE, EN/EL, BE/OP, DG/PRJ, EN/STI, DGS/RP, EN/CV, GS/SEM, BE/ABP, TE/ABT, TE/MSC, EN/GMS, TE/EPC, FP/PI, BE/ASR, GS/ASE, PH/ESE,...

Documentation & Reports

- besides R2E meetings, minutes and presentations @ LMC, former Chamonix,...
- R2E Website: <u>www.cern.ch/r2e</u>
- Document Database & Questionnaires (linked through above): www.cern.ch/info-r2e-documents
- □ Area Overview of Radiation Levels (see <u>link</u>)
- **Equipment Inventory (working document, see** <u>link</u>**)**
- Mitigation Options (working document, see <u>link</u>)
- Memorandum for possible temporary move betatron cleaning to IR3
- UJ76 Relocation (see ECR)
- **R2E Status Report @ Chamonix (see paper)**
- **RR73/77** Shielding Improvement (see ECR)
- □ Mid/Long-Term Action Plan (see <u>report</u>)
- □ R2E <u>Memorandum</u> for Short-Term Resources
- Power-Converter Summary (see internal report)
- Point-8 Iteration Summary (see <u>final draft</u>)
- **Point-1/5 Iteration Summary (in preparation)**
- Online Mitigation Project Tracking (see <u>link</u>)
- **R2E** Radiation School (see <u>program</u> and <u>summary</u>)

Backup

And Testing at CNGS?

Chamonix 2010: January 27th

An Example: US85 Safe-Room Shielding

Chamonix 2010: January 27th

R2E Status Report

2009

Session 6 – Radiation To Electron?2s: R2E Summary
IR7: Phase-II Collimation as Absorbers

- Studied in the early R2E days
- Allows relocating the losses from IR7 to IR3

(up to a certain beam intensity)

- Impact studied
 - tracking studies (R. Assmann et al.)
 - FLUKA studies radiation load in IR3 (UJ33, superconducting link, warm magnets,...)
- Results/Proposal summarized in memorandum (R. Assmann, see <u>link</u>)
- Proposal studied as temporary solution
- To be possibly reworked looking towards current collimation status and planned/possible upgrades

New equipment in US15

© Y. Muttoni

