

Summary of the 2009 CNGS TSG4 irradiation tests and perspectives for future tests and facilities

D.Kramer on behalf of the RADWG

Thanks to the users, CNGS experiment, J.Lendaro, D.McFarlane, M.Brugger, K.Roeed, EN/MEF, DG/SCR, Fluka team and the RadMon team (T.Wijnands, A.Nyul, C.Pignard)

- CNGS test facility overview
- Calibration of test positions
- Results reported by users (tunnel / alcoves)
 - CRYO
 - ♦ BIC/PIC
 - ♦ BLM
 - BPM
 - QPS
 - CL heaters
 - WorldFip
 - Power Converters
 - SURVEY

Fluka simulations for nominal beam assume • 100fb⁻¹ ARC Fluka simulations use • 10⁷s 3.64x10¹⁸p/s 10¹⁵mol/m³

2010 luminosity assumed as • 0.5fb⁻¹ 2010 ARC losses assumed as • 1/40 of nominal

- 1/40 of nominal
- Foreseen test activities in 2010
- Conclusions

Nominal year assumed as 200 days

Testing area in the TSG4 side gallery of CNGS

Temporary procedure for handling irradiated electronics was put in place for CNGS. Valid until 30/11/09 and extended from 19 Jan 2010. RADIOACTIVE electronics WORKSHOP has to be used afterwards.

Mixed radiation fields similar to the ones expected in LHC

27 Jan 2010

RADWG for Chamonix

Testing area in the TSG4 side gallery of CNGS

Temporary procedure for handling irradiated electronics was put in place for CNGS. Valid until 30/11/09 and extended from 19 Jan 2010. RADIOACTIVE electronics WORKSHOP has to be used afterwards. Mixed radiation fields similar to the ones expected in LHC

Radiation Test Facility

RADWG for Chamonix

2 Test areas – High & Low flux with multiple calibrated locations

Hottest test area in TSG46: ~ 3.3 Gy(SiO₂)/week ~ 1.8 10¹⁰(>20MeV)cm⁻²/week

TSG45

Target chamber

CRYO

WorldFip

TE/EPC

1 Week ~ 1e18pot

BIC/PIC

BLM

Hottest test area in TSG45 : ~ 28 Gy(SiO₂)/week ~ 1.9 $10^{11}(>20 \text{MeV})\text{cm}^{-2}/\text{week}$ This is expected in the LHC arcs* in 3 nominal years (10Gy/y)

27 Jan 2010 *Alongside a dipole

RADW

Calibrated radiation field data for all test locations accessible via dedicated Java <u>GUI</u>

Calibrated radiation field data for all test locations accessible via dedicated Java <u>GUI</u>

- CRYO
- BIC/PIC
- BLM
- BPM
- QPS
- CL heaters
- WorldFip
- Power Converters
- SURVEY

Data provided by E.Gousiou

<u>CRYO</u> Tunnel Electronics 9500** channels in LHC

Equip. tested in CNGS:

- Various inputs (58 channels)
- FIP communication (8 agents)
- Power supply (2 cards)

Observed Errors in CNGS None**, accuracy within specs

ARC annual levels below MBB

♦ 4e9cm⁻² E>20MeV

♦ 1Gy

2009/10

1e8cm⁻² E>20MeV

25mGy

Safety factor 2x to be all cumulative effects	applied for in this talk	Lifetime in LHC years / MTBF (channel)	Mitigation	
TID	>500 Gy	500 (12 in DS*)	Not needed.	*Some
Channel failure cross section upper limit	5e-15cm ²	>5.2y**	Upper limit on channel failure	cards up to MBB8 –
MTBF in 2010 lower limit		>200y**	overestimated	required

<u>CRYO</u> - Protected Areas Cumulative effects

Equip. tested in CNGS:

- A. 6 QRL electrical heater AC supplies (45 in LHC)
- B. 12 Insulated temperature conditioners (2400 in LHC)

Observed Errors in CNGS

- A. Solid State Relay damaged
- B. DC-DC converter fails

Annual fields in worst location UJ56,14,16

♦ 5e9cm⁻² E>20MeV

♦ 5Gy

2010

2.5e7cm⁻² E>20MeV

♦ 25mGy

A – QRL heater	OK if	Mitigation	B – Insul. temp.		Mitigation
TID	10Gy	Will be cured	TID	140Gy	Not
Nominal lifetime	2у	by shielding (& relocation in	Nominal lifetime	28y	needed
Lifetime in 2010	400y	case of UJ56 to bottom floor)	Lifetime in 2010	OK	

Only used during machine cool down – with no beam

<u>CRYO</u> - Protected Areas Single Event Errors

Equip. tested in CNGS: Insulated Temperature Conditioners Number in alcoves: 2400 channels

Observed Errors in CNGS SEU on digital isolator Annual fields in worst location UJ56,14,16

♦ 5e9cm⁻² E>20MeV

♦ 5Gy

2010

2.5e7cm⁻² E>20MeV

♦ 25mGy

		Mitigation	
Failure cross section (per channel)	2e-9cm ²	soft reset <a>	OK if
MTBF if all in UJ56 for nominal beam	0.2h	by the control system (WFip) <u>in progress</u>	
MTBF in 2010	1.7days		

- CRYO
- ♦ BIC/PIC
- BLM
- ♦ BPM
- QPS
- CL heaters
- WorldFip
- Power Converters
 SURVEY

Data provided by M.Zerlauth & B.Todd

<u>BIC</u> - Protected Areas SEEs of CPLD 3.3V [component test]

Equip. tested in CNGS: XILINX CPLD XC9500XL <u>3.3V</u> part of <u>BIS signal path</u> (critical) Number in alcoves: 36

Observed Errors in CNGS

A. 20% of SEUs cause loss of redundancyB. 80% of SEUs cause false dump

Annual fields in worst location UA87,23

♦ 5e7cm⁻² E>20MeV

♦ 0.05Gy

2010

1e7cm⁻² E>20MeV

10mGy

A / B		Mitigation
SEU cross section (per device)	2.8e-10cm ²	New quick shielding effective by factor ~10 for TED, maze
MTBF* loss of redundancy / false dump	10y / 2.5y	near TCDI,TDI to be reinforced. Simulations to be
Fault probability in 2010	2e-2 / 8e-2	penonnea.
*if all in UA87 for nominal be	am no shieldin	g Thermal neutron sensitivity cou be an issue with 3.3V

27 Jan 2010

<u>BIS/PIC</u> - Protected Areas SEEs of CPLD 5V [component test]

Equip. tested in CNGS: XILINX CPLD XC9500 <u>5V</u> part of BIS/PIC monitoring paths Number in alcoves: 336 (CIBUs – 300, PIC - 36)

- **Observed Errors in CNGS**
- A. 90% of SEUs cause monitoring problemB. 10% of SEUs cause false dump

Annual fields in worst

- location RRs
- ◆ 1e9cm⁻² E>20MeV

1Gy

2010

OK

v low

♦ 5e6cm⁻² E>20MeV

5mGy

A / B		Mitigation
SEU cross section (per device)	3.8e-13cm ²	MTBF ~same as electrical reliability of the CPLD!
MTBF* monitoring problem / false dump	8y / 72y	Relocations from UJ56,14,16 fully prepared so not considered here
Fault probability in 2010	6e-4 / 7e-5	(contain PLCs).
*if all in RR13 for nominal bea	am Destructi probabili	ve Latchups of CPLDs should have v

RADWG for Chamonix

- CRYO
- BIC/PIC
- ♦ BLM
- BPM
- QPS
- CL heaters
- WorldFip
- Power Converters
- SURVEY

Data provided by E.Effinger

BLM - Protected Areas and ARCs Cumulative and SEE effects

Equip. tested in CNGS:

- A. Power Supply Haltec 2.5V (37x)
- B. Power Supply Haltec 5V (74x)
- C. BLECF tunnel card, PS (600x)

Observed Errors in CNGS

- A. Total dose effects, voltage drop
- B. Total dose effects, voltage drop
- C. 1 SEE leading to false dump

Annual fields in worst location RR13 / ARC (MQ)

- 1e9 / 4e10 cm⁻² E>20MeV
- 🔶 1 / 10 Gy

2010

- 5e6 / 1e9 cm⁻² E>20MeV
- ◆ 5 / 250 mGy

A.D. Dower Overalies Mitigation			B – BLECF		Mitigation
A,B Power Supplies		Mitigation	חוד	750Gy	Not
TID	85/33Gy	Not needed		750Gy	nocdod
Nominal lifetime	95/221		Nominal lifetime	75y	herdlad
	00/33y		SEE cross	1.9e-13cm ²	handled
Lifetime in 2010	OK		section		reset via
			MTBF	44days	HV
			MTBF in 2010	8.8y	

- CRYO
- BIC/PIC
- BLM
- ♦ BPM
- QPS
- CL heaters
- WorldFip
- Power Converters
- SURVEY

Data provided by E.Calvo

27 Jan 2010

<u>BPM</u> – tunnel electronics

 A. Intensity card (330x) B. Power Supply (330x) C. WorldFIP card (330x) D. 2 WBTN cards (2160x) Observed Errors in CNGS A. After SEE out of range readings C. After SEE, WBTN calibration off and High sens. mode, max 250um offset for 1 min 			<mark>< bu</mark>	Annual locatio • 4e10 cm ⁻² E • 10 Gy • 1e9 cm ⁻² E> • 0.25 Gy	fields in n - ARC >20MeV 2010 20MeV	worst (MQ)
A Int. card / B,C,	D WBTN	Mitigatic	n	C – WorldFIP ca	rd	Mitigation
TID	4/>230Gy	Card 🗸		SEE cross	4e-12cm ²	Channel
Nominal lifetime	0.4y/>23y	needed or	nly	section		can be
		for initial	ot	MTBF	3.8days	masked by
Lifetime in 2010	16y/920y	low intens	sity	MTBF in 2010	152days	feedback

- CRYO
- BIC/PIC
- BLM
- BPM
- QPS
- CL heaters
- WorldFip
- Power Converters
- SURVEY

Data provided by R.Denz

<u>nQPS</u> – LHC ARCs [new QPS layer]

Equip. tested in CNGS: Field-bus coupler type DQAMGS Number in tunnel: 450

Observed Errors in CNGS

SEE in uFip or FieldDrive freezes the supervision path – access needed prior to Annual fields in ARCs under dipoles

♦ 4e9cm⁻² E>20MeV

♦ 1Gy

2010

- 1e8cm⁻² E>20MeV
- 25mGy

next fill to restart the card. Observed analog drifts do not pose problems

		Mitigation	
SEU cross section (per device)	2.8e-10cm ²	Automatic reset of the WorldFIP. Solution tested successfully in	
MTBF nominal beam	10h	CNGS. To be implemented when the errors start to appear.	
MTBF in 2010	16d	Not Of	K bu

"2009 tests in CNGS <u>confirmed the radiation tolerance</u> of the detection systems of the <u>new QPS layer</u> including the power supplies. Detailed evaluation still to be done"

27 Jan 2010

- CRYO
- BIC/PIC
- ♦ BLM
- ♦ BPM
- QPS
- CL heaters
- WorldFip
- Power Converters
- SURVEY

Data provided by S.Le Naour

Current Lead heaters – protected

areas

Equip. tested in CNGS: 7 Regulators and Solid State Relays (UJ&RRs 408x, others not counted: 904x)

Observed Errors in CNGS Destructive SEE in the regulator – ice formation on DFB after dump => Cryo Start removed

Annual fields in the worst location i.e. UJ56

5e9 cm⁻² E>20MeV

♦ 5 Gy

2010

2.5e7 cm⁻² E>20MeV

♦ 25 mGy

Temperature regulator	Mitigation	
SEE cross section	2e-11 cm ²	Not critical for the
MTBF	devices in UJs.	
MTBF in 2010	5у	Shielding will help
	Not OK but	

- CRYO
- BIC/PIC
- BLM
- BPM
- QPS
- CL heaters
- WorldFip
- Power Converters
- SURVEY

Planned development of the new nanoFIP is covered in the talk of J.Serrano

Data provided by J.Palluel

WorldFIP – signal repeaters in the tunnel

Equip. tested in CNGS: 2 Repeaters Cu-Cu (320x in ARC)

Observed Errors in CNGS Total dose effect – replacement required before beam on Annual fields in worst location - ARC along MB

4e10 cm⁻² E>20MeV

♦ 10 Gy

2010

1e9 cm⁻² E>20MeV

◆ 0.25 Gy

Repeater		Mitigation	
TID	165/>250Gy	Device inspected yesterday -	
Fluence h>20MeV	1.1e12cm ⁻²	Annual dose overestimated	
ARC lifetime	16y	(cable tray).	

- CRYO
- BIC/PIC
- BLM
- BPM
- QPS
- CL heaters
- WorldFip
- Power Converters
- SURVEY

For detailed results please look in the talk of Y.Thurel

Data provided by Y.Thurel, S.Dubettier

Power Converters – tunnel and part of alcoves electronics

Equip. tested in CNGS:

- A. FGC COD (752xARCs)
- B. FGC Generic (189+256xUJs,RRs)
- C. High precision part SD360 (as B.)
- D. Component tests

Observed Errors in CNGS

- A. B. Crashes of FGC requiring power cycle and therefore dump (so far unexplained half SEL of CPLD?)
- C. Very frequent corruptions only in 350**, <u>360 OK</u> (more tests needed)

Annual	fields	in worst
location	– UJ5	6 / ARC

- 5e9 / 4e9 cm⁻² E>20MeV
- ◆ 5/1 Gy

2010

- 2.5e7 / 1e8 cm⁻² E>20MeV
- 🔶 25 / 25 mGy

**Corruptions of SD350 (Generic FGC) are rather critical due to large cross section

A (ARC) / B	UJs) FGCs	Mitigation	A+B – FGC	Not OK?	Mitigation
		100Gy	No problems	SEE cross	2.3e-11cm ²	Shielding will
Nominal lifeti	me	100y/20y	expected	section *		help in
_ifetime in 20	10	OK	trom	MTBF *	1.8days	UJS,RRS not
			effects	MTBF in 2010	72days	REDUNDANT!

All crashes occurred only at low fluence -> uncertainty in cross section. If total fluence considered, MTBF = 7days 27 Jan 2010 RADWG for Chamonix

- CRYO
- BIC/PIC
- BLM
- BPM
- QPS
- CL heaters
- WorldFip
- Power Converters
- SURVEY

Data provided by A.Marin

SURVEY– controller electronics from protected areas

Equip. tested in CNGS: 1 Controller crate (6x,UJ56)

Observed Errors in CNGS

- a) Cumulative effect failure, drifts very small
- b) System crashes (likely SEE in the uFip) requiring remote reset via WorldFip, no beam dump

Annual fields in worst location – UJ56

5e9 cm⁻² E>20MeV

♦ 5 Gy

2010

◆ 2.5e7 cm⁻² E>20MeV

♦ 25 mGy

Triplet motor drivers should remain OFF during beam operation (in the same rack)

a) (OK	Mitigation	b)	OK	Mitigation
TID	100Gy	No problems	SEE cross	8e-12cm ²	System can
Nominal lifetime	20y	expected	section		remain in 1 st floor of UJ56 w/o shielding
Lifetime in 2010	OK	rom	MTBF	4y	
		effects	MTBF in 2010	800y	

List of tests for LHC electronics in external facilities in 2009

PSI proton beams 60/250MeV used by

- QPS for component tests
- WIC for Siemens remote I/Os
- RadMon for calibrations
- CEA Valduc 1MeV n, 14/5MeV n
 - BLM, CRYO for NIEL
 - RadMon calibrations
- UCL Louvain la Neuve Heavy ions
 - CPLD tests
- NRI Prague (epi)thermal n
 - RadMon calibration
 - Repeater test

IRA Lausanne Co60

RadMon calibrations

Conclusions – no bad surprises

- Very large effort has been dedicated by the equipment groups to the radiation tolerance tests in CNGS!
- Most of the electronics systems form the LHC tunnel were tested in CNGS TSG4 in similar spectra as expected in the LHC
- Small part of the systems from the alcoves (RRs, UJs, ..) tested as well
- Resulting lifetimes from cumulative effects and failure rates from single events were estimated for nominal beam conditions and for 2010 (0.5fb⁻¹) – see the following Summary Table
- Many systems suffer from errors in the WorldFip modules (BPM, nQPS, CRYO, SURVEY) - the nanoFIP is expected to help in some cases
- Most issues solved by HW/FW modifications
- Several systems rely on the shielding improvements
- The BPM intensity card fails at low dose but is required just for commissioning
- The very complex issue of power converters is better covered in the separate talk of Yves

RADWG for Chamonix

Outlook

Several users want to do more tests in 2010 at CNGS

- CRYO, QPS, TE/EPC
- n_TOF could be eventually used as similar facility (2 options) if too many requests for CNGS (unlikely in 2010/11)
 - Modifications would have to be started very soon
 - Mixed field close to target
 - Broad n⁰ spectrum with rather low flux

 HiRadMat can also be accommodated to host the mixed field electronics tests

<u>Requests from users</u> would be required to support the decision

 Sharing of test experiences, beam times (=expenses) and results through RADWG can be very helpful

Failure rate and lifetime estimations for 2010 and nominal LHC

SYSTEM	subsystem	MTBF	Lifetime with nominal beam	MTBF 2010	Lifetime 2010
CRYO	Tunnel channels	>5.2y	500 (12y DS)	∞	∞
	Ins. Temp reading	0.2h	28y	12d	∞
	QRL heater PS		2у		∞
BIC/PIC	BIS I.o.r./dump	10/2.5y		50/12.5y	∞
	Monitoring/dump	8/72y		∞	∞
BLM	PS 2.5/5V		33/85y		∞
	BLECF	44d	75y	8.8y	∞
BPM	WBTN	3.8d	23y	0.75y	∞
	Intensity card		0.4y		16y
QPS	nQPS	10h		16d	
CL heaters	Temp. controller	5d		5y	
WFip rep.	ARC		16y		∞
Power Co.	FGC ARC/UJs	1.8d	100/20y	72d	∞
Survey	Control crate	4y	20y	∞	∞

Lifetime estimations should be divided by safety factor 2

Backup slides -Radmon Calibrations

- The Hadron>20MeV sensitivity is quite well understood in forward shower regions – very good match with Fluka
 - Excellent result behind the TED
 - Most of the CNGS positions (match in line of sight to target chamber)
 - CERF calibration campaign explored combinations of various settings and fields
- Several measurements done in different neutron fields to determine the sensitivity below 20MeV
 - Analysis to be finalized
 - Measurements at PTB mono-energetic neutron beams are scheduled for 2010
- Dose sensitivity calibration measurements yet to be extended to higher doses
 - Calibration in Co60 gamma field
- 1MeV n equivalent fluence calibration to be reviewed for higher fluences
 - Calibration in neutron field of air cooled U235 reactor data available

RADWG for Chamonix