Impact of safety related requirements and evolutions on LASS and LACS

By Rui NUNES In the name of the Access Team

BE 2010 Chamonix WS 27/1/2010

BE 2010 Chamonix WS 27/1/2010

Current major issues

- 1. MAD
- 2. EIS-f bypass (in/out of chain)
- 3. Resectorisation needs
 - Access vs Ventilation
 - "Overpressure" doors
 - Maintenance
- 4. New Interlocks
- 5. Moving equipment due to R2E
- 6. New access points
- 7. Other Technical Improvements

LHC Access in numbers

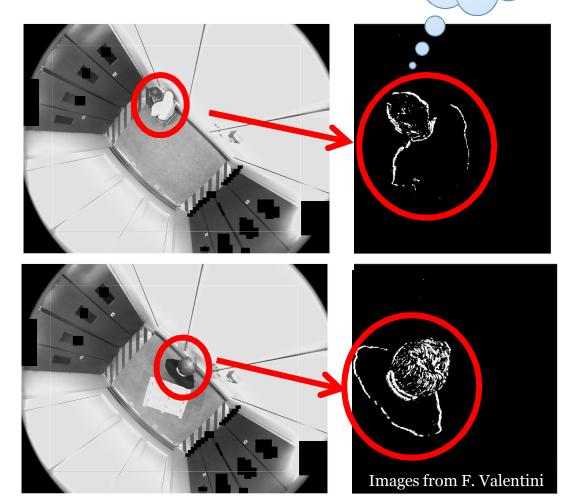
- 35 Access points
- 44 PADs 30MADs
- 116 Sector doors
- 81 End-of-Zone doors
- 22 interlocked + 24 non-interlocked ventilation doors
- EIS-f/m interlocks (interfaces)
 - Magnets (6 Power converters & respective Cells)
 - Beam stoppers (2 TED)
 - Access Safety blocks (2 valves)
 - Electron stoppers (4 valves)
 - RF interlock
 - L BDS LHC Beam dump system
 - BIS Beam interlock System
 - SPS Access chains 3 & 5

LACS and LASS

- LHC Access **Control** System (LACS)
 - Authorise and authenticate the people who enter
 - Authorise = have the credentials
 - Valid Contract, Dosimeter, training, EDH, ADI, etc...
 - Authenticate = you are who you say you are
 - Biometrics
- LHC Access **Safety** System (LASS)
 - People => no beam
 - Beam => no people

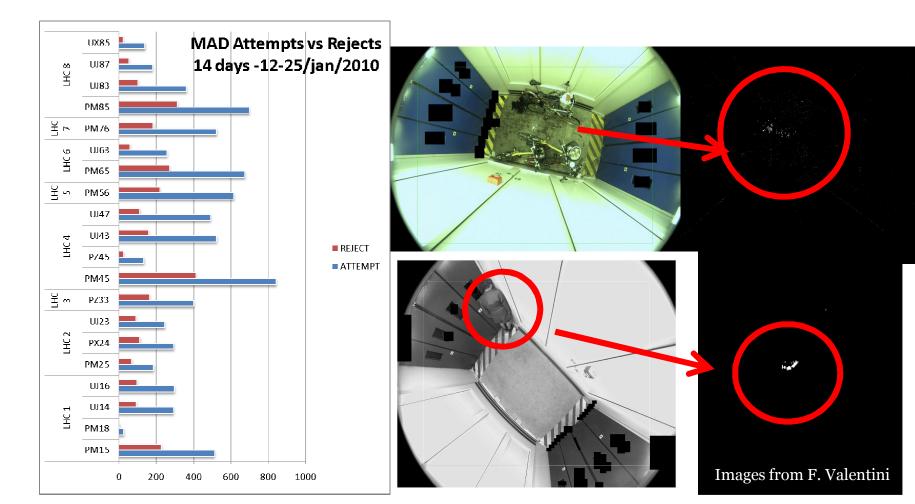
MAD - Material Access Device

- Guarantee that no person can enter through the MAD involuntarily or by mistake
- Particularly in RESTRICTED MODE + PATROL :
- Current solution is considered insufficient

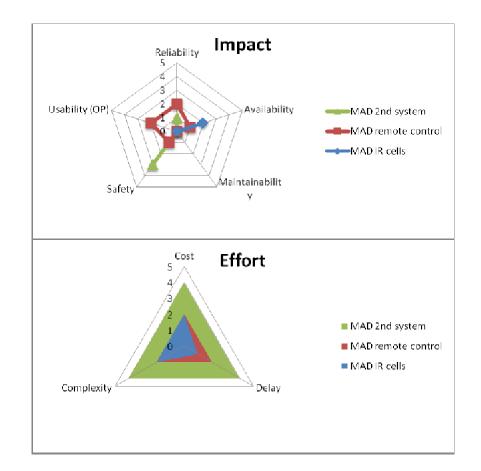

- Current approach
 - fine Movement detection
- but
 - Flashing lights,
 - Snow melting & water
 - Light changes, etc...
- Current difficulties include
 - too lax detection
 - False acceptance risk
 - \rightarrow potential Safety problem
 - too strict detection
 - False rejection high
 - \rightarrow Availability problem

I'm going slightly

mad...


MAD with people

- Normal people trying to stay still
- Easily detectable target
- However we are now with increased sensitivity in order to detect even the finest movement


BE 2010 Chamonix WS 27/1/2010

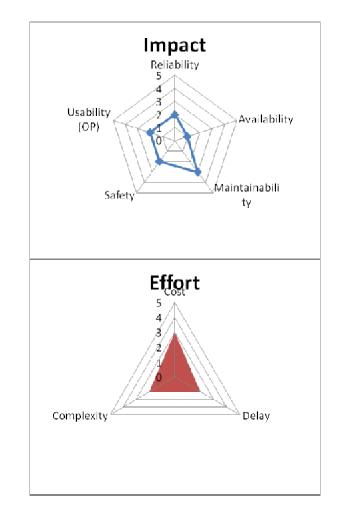
MAD extremes

MAD - Material Access Device

- Design modification
- Actions foreseen
 - 1. Make detection "failsafe"
 - 2. IR cells as complement
 - 3. Remote control
 - 2nd Redundant system of diverse technology (e.g. via thermal imaging)

EIS-f/m bypass

- 53 bypass action since June 2008
- 4 bypass actions in Jan 2010
- Each request is generally
 - Urgent
 - Moderately complex
 - 6-20 Cabled straps to execute each time
- If mistakes are made
 - Access forbidden in LHC
 - Evacuation sirens possible
- Status of EIS bypass available only in documentation

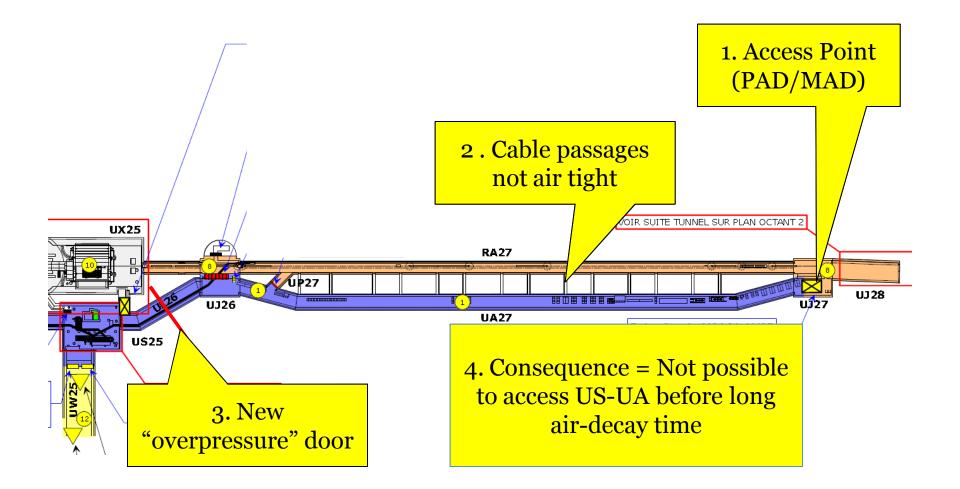

			22/01/2010	20/01/2010	19/01/2010	07/01/2010	16/11/2009	07/10/2009	05/10/2009	24/09/2009	21/07/2009	08/06/2009
	EIS	LHC Point	Status	Status	Status	Status	Status	Status	Status	Status	Status	Status
	34.LR3 + ID304/3E	3.3	In chain	In chain	In chain	In chain	In chain	In Chain	In Chain	In Chain	Out of Chain	In Chain
	34.LR7 + ID304/7E	7	In chain	In chain	In chain	In chain	In chain	In Chain	Out of Chain	Out of Chain	Out of Chain	In Chain
ASB.	VVSH.5L3.R	3.3	In chain	In chain	In chain	In chain	In chain	In Chain	Out of Chain	Out of Chain	Out of Chain	Out of Chain
ASB.	VVSH.5L3.B	3.3	In chain	In chain	In chain	In chain	In chain	In Chain	In Chain	In Chain	In Chain	In Chain
	H 2931M+ D205/2R	2	In chain	In chain	In chain	In chain	In chain	In Chain	In Chain	In Chain	Out of Chain	Out of Chain
	ISIA 2952M+ D135/2R	2	In chain	In chain	In chain	In chain	In chain	In Chain	In Chain	In Chain	Out of Chain	Out of Chain
TE	ED29132	2	In chain	In chain	In chain	Out of Chain	In chain	In Chain	In Chain	In Chain	In Chain	In Chain
TE	ED67765	8	In chain	In chain	In chain	Out of Chain	In chain	In Chain	In Chain	In Chain	In Chain	In Chain
	B 8813M+ ID220/8R	8	In Chain	In Chain	In Chain	In Chain	In Chain	In Chain	In Chain	In Chain	In Chain	In Chain
EM	H 8783M + D401 (ou D605/8R)	8	Out of chain	Out of chain	In Chain	In Chain	In Chain	In Chain	In Chain	In Chain	In Chain	In Chain
Conv	. 18kV (RF)	4	In chain	In chain	In chain	In chain	In chain	In Chain	In Chain	Out of Chain	Out of Chain	Out of Chain
	RF	4	In chain	In chain	In chain	In chain	In chain	In Chain	In Chain	Out of Chain	Out of Chain	Out of Chain
	Stoppers (4 /alves)	4	In Chain	In Chain	In Chain	In Chain	In Chain	In Chain	In Chain	In Chain	In Chain	In Chain
	LBDS	6	Out of chain	In Chain	In Chain	In Chain	In Chain	Out of Chain	Out of Chain	Out of Chain	Out of Chain	In Chain

EIS bypass in time

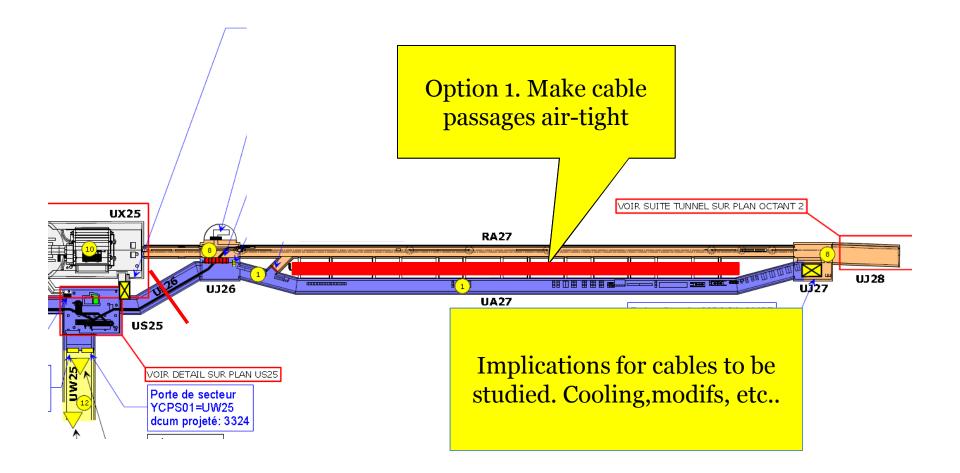
EIS-f/m bypass

- Technical improvement
- Solution foreseen
 - Pre-cabled electrical relay bypass possibility on main EIS-f/m signals
 - On-line signalisation in the CCC LASS Console
 - System built-in bypass procedure to give the DSO full control
 - e.g. interlocked keys, etc...

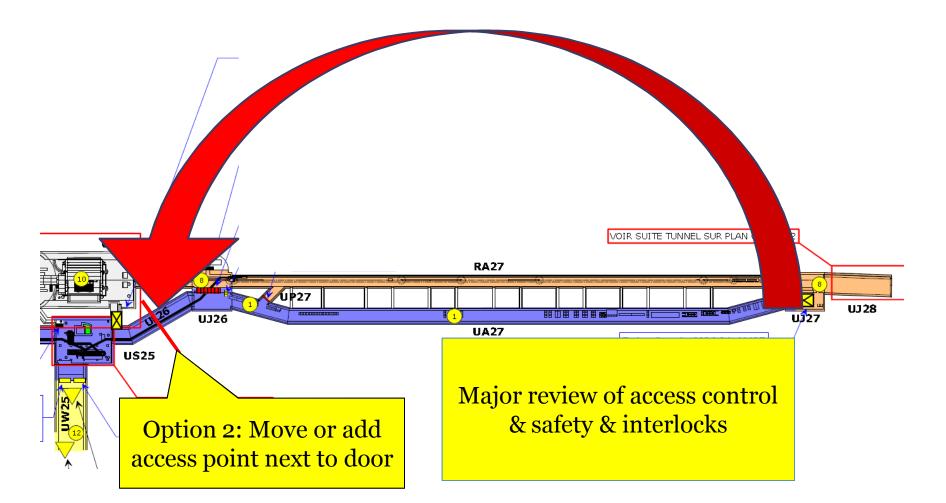
Access Safety vs. Ventilation


• Requirement

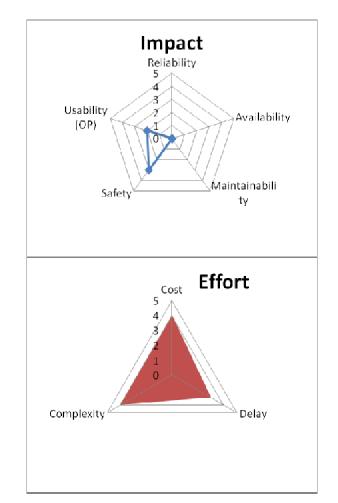
- Align the Access sectorisation with the ventilation sectorisation
- This is no longer the case, mostly in the UAs, but maybe also some other areas


Consequence

- If not done access to service areas shall be more limited than expected
- Let's take the example for LHC2 UA27

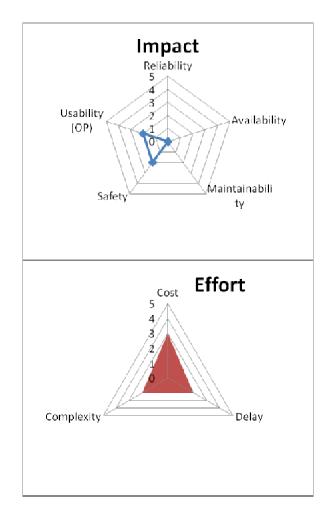

Access Safety vs. Ventilation

Access Safety vs. Ventilation - Option 1


Access Safety vs. Ventilation - Option 2

Access Safety vs. Ventilation

• This is not a new requirement


- Non-air tightness has been known for a while
- Must decide on course of action
 - Option 1 make air-tight
 - Option 2 modify Access
 - Option 3 do nothing
- Study is necessary in 2010
- Design modification

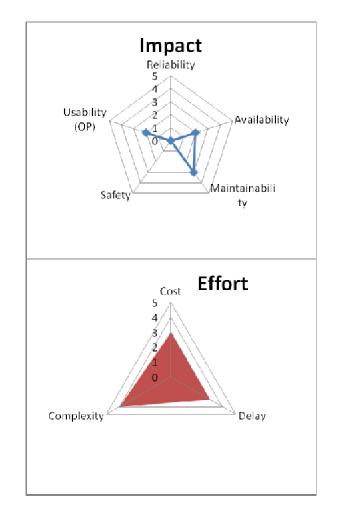
"Overpressure" doors integration

Requirement

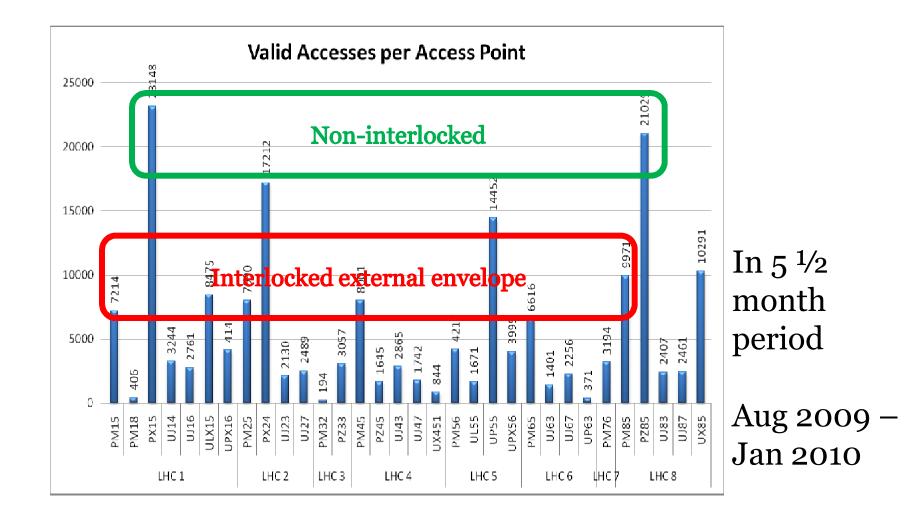
- Acquire the status of new doors in a more reliable fashion
- related to previous issue on sectorisation and containment of a MCI
- Consequence
 - Not technically complex
 - Requires exhaustive nonregression testing
 - ...New interlocks?
- Design modification/Scope increase

Sectorisation for Maintenance

Requirement

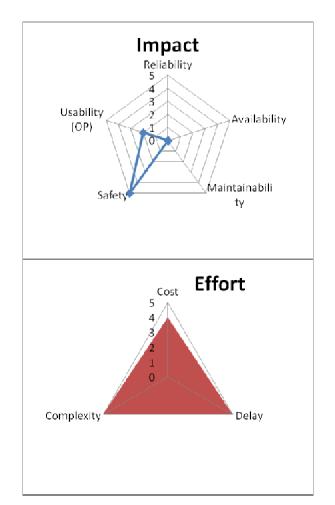

- Allow for maintenance in external envelope during run periods (PM shafts)
- Most solicited interlocked access points

Consequence


Move the external envelope inwards

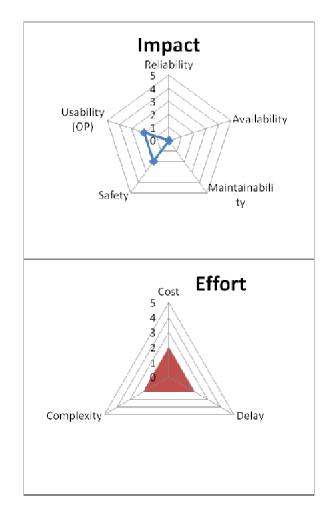
Or

- Add additional door like in SPS
- Design modification



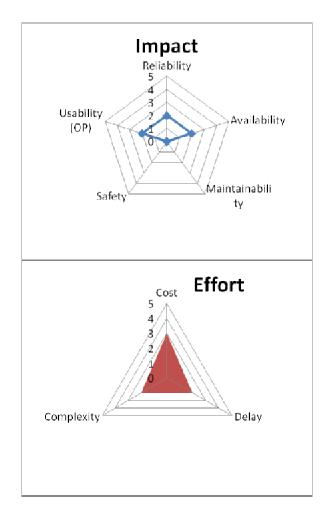
BE 2010 Chamonix WS 27/1/2010

New interlocks - Powering Tests


- Requirement
 - Cover the risk of MCI during Phase 2 powering tests
 - Interlock PCs in case of intrusion in (another) envelope
- Consequence
 - Risk analysis necessary
 - Can be extremely complex depending on the number of interlock points
 - May require Power Converter modifications to provide safety interlocks
 - May require re-sectorisation as before
- Scope increase/new risk

New interlock - fresh air supply

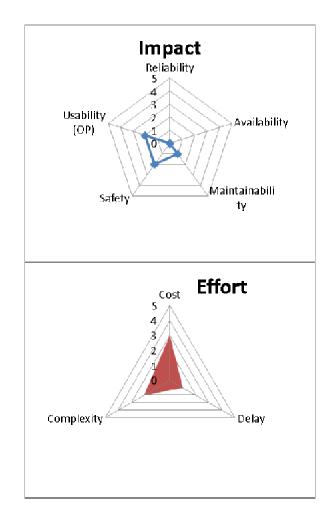
• Requirement


- Stop people from entering LHC if the ventilation conditions are not OK
- Consequence
 - More complicated on the ventilation side than on the Access side.
 - Difficult to obtain this information
 - Technically not complex to implement for LACS
- Scope increase

R2E - Moving equipment

Requirement

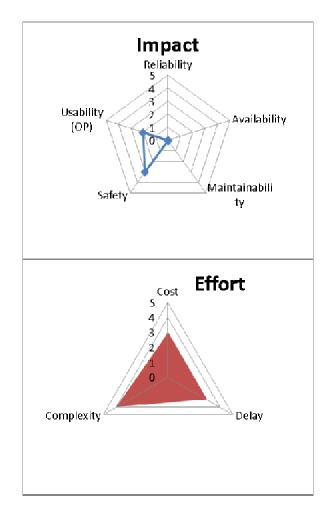
- Remove critical equipment from areas that are subject to R2E effects
- Areas concerned are
 - 1. UJ56
 - 2. UJ76..?
 - 3. UJ33, ?
- Consequence
 - Moving equipment requires re-cabling and finding new locations (integration)
- Design modification


New access points (non-interlocked)

• Requirement

- PM54 CMS
- Finish installation according to design so we can:
 - count underground occupants
 - Homogenise supervision & maintenance

Consequence


- Not technically complex
- Civil engineering integration for new location requested by CMS
- Can be done during beam
- Technical Improvement

New access points (interlocked)

Requirements

- TZ32 CLIC alignment use
 - New PAD+MAD in US32
- PZ65
 - to be confirmed
 - when PM65 unavailable
- Consequence
 - Moving of existing end-ofzone doors & new interlocked zone
 - Re-sectorization implications
 - Re-cabling from PZ33
- Design modification

S1

S2

Other technical improvements

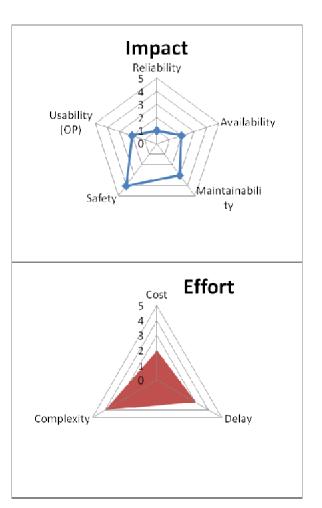
- PAD programme correction
 - To avoid losing patrols on passage
- Intercom improvement
 - Noise reasons next to compressor areas
- Video improvement
 - technological change to avoid freezing & improve fluidity
- IHM improvement
 - Capability of treating multiple access points simultaneously
- Improve LACS-LASS interfaces
 - Application of access modes
- Improve interface with ATLAS SSA

Slide 24

S1 include in list sharepoint as new item Sedas, 1/19/2010

S2 include in list sharepoint as new item Sedas, 1/19/2010

Thank you for your attention


BE 2010 Chamonix WS 27/1/2010

Scale of graphs - example

Scale	Safety	Scale	Cost (CHF)	Delay	Complexity
0	no improvement	0			
1	minor improvement	1	> 1 000	6 months	simple SW or HW
2	medium improvement	2	> 10 000	1 year	SW or HW
3	major improvement	3	> 100 000	2 years	Complex SW or HW
4	New safety function	4	> 1 000 000	3 years	Re-Design issue
5	New risk covered	5	> 10 000 000	> 3 years	New concept

Other criteria: qualitative scale of 0-5

- Reliability
- Availability
- Maintainability
- •Usability

